Другое направление исследований было тесно связано с попытками вывести основные законы математики из чисто логических принципов и представлено, прежде всего, именами Готтлоба Фреге (1848–1925) и Бертрана Рассела (1872–1970). Эти ученые вернули понимание логики как дедуктивной системы, которое было нетипично для алгебраической логики. Г. Фреге в небольшой брошюре «Запись понятий» (Begriffsschrift, 1879), по сути, частично реализовал программу Г. В. Лейбница, построив формализованный язык логики и на его основе исчисление, в котором все законы логики выводились из небольшого числа логических аксиом. К сожалению, как обнаружил в 1902 г. Б. Рассел, в логической системе Фреге выводимо противоречие, которое до сих пор часто обозначается как парадокс Рассела . Это открытие было очень болезненным, поскольку Фреге строил свое исчисление для того, чтобы показать, что в нем могут доказываться не только законы логики, но и основные законы арифметики натуральных чисел. К тому времени уже было показано, что остальные разделы математики могут быть выведены из теории натуральных чисел, а естествознание, насквозь пронизанное математическими методами, уже стало гордостью человеческой цивилизации. Получалось, что все это строившееся столетиями здание научных знаний ничего не стоит, поскольку оно основано на столь эфемерном фундаменте, как противоречивая логика. Поэтому лучшие математики того времени обратились к тщательному изучению и исправлению логики, ибо речь шла ни больше ни меньше как о спасении самой математики. Результатом этого процесса и стало появление современной логики. Важной вехой на этом пути явилась монография Давида Гильберта и Вильгельма Аккермана «Основания теоретической логики» (1928, русское издание – 1947). По сути, это первая книга, специально посвященная символической логике, – ведь у Фреге, Рассела и других авторов логика была первым разделом труда, посвященного основаниям математики. Структура и порядок изложения, представленные в этой работе, по сей день, по существу, лежат в основе современных курсов логики.
Таким образом, современная логика была создана математиками для решения проблем, возникших в основаниях математики. Тем не менее достаточно скоро обнаружилось, что, во-первых, созданный математиками логический аппарат может найти применение не только в математике: многие философы попытались, и довольно успешно, по-новому взглянуть с его помощью на традиционные философские проблемы; затем он нашел довольно эффективное применение в информационных технологиях и кибернетике, в анализе естественного языка, во многих других сферах. Во-вторых, практически немедленно после его появления он сам стал предметом пристального внимания. Критическое обсуждение некоторых фундаментальных принципов новой логики уже в 1920-е гг. привело к тому, что начали формироваться различные направления неклассических логик, многие из которых не были связаны с проблемами обоснования математики. Поэтому не совсем правильно характеризовать современную логику как математическую логику, если под этим понимается не более чем один из разделов математики. Ее можно считать математической в смысле знаменитого афоризма, авторство которого приписывается П. С. Порецкому (1846–1907), автору первого в России лекционного курса по математической логике, согласно которому математическая логика, будучи «современной теорией правильного рассуждения», есть «логика по предмету и математика по методу».
1.3. ОБ ОСОБЕННОСТЯХ ФОРМАЛИЗОВАННЫХ ЯЗЫКОВ
Современные логические теории строятся на основе некоторого специально создаваемого для этих целей языка. Теория языка, даже если речь идет о формализованном языке логических теорий, строго говоря, не является разделом логики. Тем не менее, учитывая, что формализованный язык является необходимым условием для построения логической теории, мы не можем не уделить ему некоторого внимания.
Искусственные языки, используемые при построении логических теорий, называют формализованными, поскольку их цель состоит в том, чтобы точно отобразить логическую форму выражений, используемых в рассуждении. Это сразу позволяет нам указать первое отличие этих языков от естественных. В первом приближении можно выделить две функции языка: коммуникативную и репрезентативную. Язык может выступать, во-первых, как средство общения и, во-вторых, как средство выражения. Искусственные языки, создаваемые для научных целей, к которым относятся и языки логики, не предназначены для общения: они выполняет только вторую функцию – репрезентативную.
Читать дальше