Решение задачи оптимизации существенно осложняется в тех случаях, когда необходимо использовать более одной целевой функции. При оптимизации торговых стратегий эта проблема возникает почти всегда. Основная целевая функция для таких стратегий – прибыль. Однако невозможно ограничиться только этим показателем. Необходимо принимать во внимание также изменчивость прибыли, максимальные просадки, долю прибыльных сделок, показатели риска и многие другие важные факторы, каждый из которых является отдельной целевой функцией.
Особенность использования нескольких целевых функций заключается в том, что максимум одной функции редко совпадает максимумом другой. Напротив, разные целевые функции, как правило, оказываются противоречащими друг другу – оптимальные значения одной из них могут оказаться сколь угодно плохими с точки зрения другой. (Подобная ситуация уже рассматривалась нами в разделе 1.6.) Поиск путей эффективного использования нескольких целевых функций составляет предмет теории многокритериальной оптимизации. Можно выделить три основных подхода к многокритериальной оптимизации:
1. Выделение одного из критериев как основного с превращением прочих в ограничения (фильтры). После получения оптимального решения по основному критерию вычисляют значения прочих критериев в точке оптимума. Если решение, найденное по основному критерию удовлетворяет ограничениям, наложенным на второстепенные критерии, то их наличие не влияет на результат. Если же величины этих критериев оказываются неприемлемо низкими или высокими, то данное решение отбрасывается.
2. Построение комбинированного критерия (свертки). Он может быть образован как простое или взвешенное среднее арифметическое (веса могут отражать важность критериев или просто учитывать различный разброс их числовых значений) или среднее геометрическое (также простое или взвешенное). Кроме этого, существует еще несколько вариантов свертки.
3. Оптимизация по методу Парето . В большинстве случаев этот способ приводит к получению нескольких оптимальных решений, даже если по каждому критерию существует единственный максимум. Результатом оптимизации становится совокупность решений, представляющая собой множество Парето. В него входят такие решения, которые доминируют над всеми прочими вариантами, не вошедшими в оптимальное множество. При этом ни один из вариантов, отнесенных к паретовскому множеству, не доминирует над другими вошедшими в него вариантами.
Все методы многокритериальной оптимизации приводят к привнесению в систему определенного субъективного элемента. В первом случае он состоит в выборе одного из критериев в качестве главного и в задании ограничений для второстепенных. В случае свертки субъективным является выбор способа комбинирования критериев и определение весов (особенно если они вводятся для учета важности критериев). Необходимость выбора единственного решения из множества равнозначных альтернатив (метод Парето) также обременена влиянием субъективных факторов. В разделе 2.4 мы рассмотрим основные особенности многокритериальной оптимизации применительно к разработке автоматизированных торговых систем.
2.2. Оптимизационное пространство дельта-нейтральной стратегии
Форма и свойства оптимизационного пространства зависят от многих факторов, большинство из которых было названо в предыдущем разделе. Бесспорно, форма оптимизационного пространства специфична для разных опционных стратегий. Каждая стратегия имеет свой уникальный набор параметров, области их допустимых значений и шаг оптимизации. Поэтому совершенно естественно, что разные стратегии будут иметь весьма различные оптимизационные пространства. Однако даже в тех случаях, когда параметры, области допустимых значений и шаг являются одинаковыми для двух разных стратегий (например, такая ситуация вполне реальна для дельта-нейтральной и частично-направленной стратегий), их оптимизационные пространства могут быть (и в большинстве случаев бывают) очень разными.
В этой главе мы ставим себе целью рассмотреть форму и свойства некоего типичного пространства, взяв в качестве примера базовую дельта-нейтральную стратегию. Два основных параметра этой стратегии (которые широко обсуждались в главе 1) зафиксируем на следующих значениях: порог критерия > 1 %, диапазон страйков 10 %. В предыдущей главе мы уже частично касались темы оптимизации, когда обсуждали эти параметры. Однако в разделе 1.6 мы находили оптимальные значения, полагаясь по большей части на научный подход, а не используя технические приемы оптимизации, которым посвящена эта глава.
Читать дальше
Конец ознакомительного отрывка
Купить книгу