Второе важное свойство – это устойчивость оптимизационного пространства . Под устойчивостью мы понимаем нечувствительность рельефа пространства (или, другими словами, неизменность формы пространства) к небольшим изменениям параметров, которые не участвуют в оптимизации, а фиксируются исходя из определенных соображений разработчика торговой стратегии. Сюда же можно отнести и устойчивость к небольшим изменениям в структуре стратегии. Другой, не менее важный аспект устойчивости, – это степень чувствительности оптимизационного пространства к протяженности исторических ценовых рядов, используемых для расчета значений целевой функции. Слишком короткие ценовые ряды приводят к тому, что торговая система настраивается только на недавние рыночные тренды. С другой стороны, длинные ценовые ряды настраивают систему на возможно устаревшие данные. Кроме того, желательно, чтобы исторические данные, используемые в оптимизации, отражали различные состояния рынка (то есть спокойные и кризисные периоды). Все эти соображения приводят к тому, что при настройке торговой системы приходится экспериментировать с историческими рядами разной протяженности. В таких ситуациях желательно, что бы форма оптимизационной поверхности не очень изменялась (то есть была устойчивой) при относительно небольших изменениях длины исторических рядов.
Все задачи оптимизации сводятся к отысканию наибольшего или наименьшего значения некоторой функции, которую принято называть целевой функцией. Она представляет собой отображение вектора значений параметров (которые являются аргументами функции) на число, являющееся значением функции в определенной точке оптимизационного пространства. Целевая функция может быть задана формулой или расчетным алгоритмом (который по заданному набору параметров вычисляет значение оптимизируемой величины) или браться из эксперимента. Методы поиска оптимальных решений зависят от свойств целевой функции и той информации о ней, которая является доступной в процессе решения задачи.
В соответствии со сложившимися научными традициями, задачи оптимизации принято решать путем определения наименьшего значения целевой функции. Несмотря на то что с практической точки зрения нахождение максимального и минимального значений – это противоположные задачи, для их решения могут применяться одни и те же методы. Для этого следует переформулировать задачу таким образом, чтобы минимум исходной задачи соответствовал максимуму переформулированной (например, взяв целевую функцию с противоположным знаком или взяв обратную к ней величину в качестве новой целевой функции). Тогда алгоритм, отыскивающий максимум новой задачи, тем самым найдет минимум первоначальной (и наоборот). Несмотря на сложившиеся традиции, мы будем формулировать оптимизационные задачи как поиск максимумов. Это объясняется тем, что одной из основных целевых функций при оптимизации торговых стратегий является прибыль и различные производные от нее. Поэтому с психологической точки зрения комфортнее максимизировать прибыль, а не минимизировать ее.
Исторически теория оптимизации работала почти исключительно с целевой функцией, задаваемой аналитической формулой. В наиболее простых с математической точки зрения случаях формула представляет собой дифференцируемую функцию. Для исследования ее свойств (участки возрастания и убывания, точки экстремума) может использоваться производная, что позволяет строить эффективные алгоритмы поиска оптимального решения. Приравнивание к нулю производных по всем параметрам и решение полученной системы уравнений позволяет получить изящное решение в общем виде.
Современные потребности, поддерживаемые впечатляющими достижениями научно-технического прогресса, привели к существенному расширению круга решаемых прикладных задач. Во многих из них целевая функция не задана аналитически и не может исследоваться с помощью производных. В этих условиях значения функции могут быть получены только путем алгоритмических расчетов.
Методы, использующие алгоритмические расчеты и не требующие вычисления производных целевой функции, называются прямыми методами . Несомненным достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости. Более того, она может быть не задана в аналитическом виде. Единственное на чем основаны алгоритмы прямых методов, это возможность определения значений целевой функции. Практически все задачи, требующие оптимизации торговых систем, решаются на основе применения алгоритмических моделей. Поэтому в настоящей главе мы будем заниматься только прямыми методами оптимизации.
Читать дальше
Конец ознакомительного отрывка
Купить книгу