Диапазон допустимых значений определяется теми ограничениями, которые разработчик торговой системы накладывает на параметры, участвующие в расчете целевой функции. Например, в главе 1 нами исследовались два параметра – порог критерия и диапазон страйков. В качестве диапазона допустимых значений для первого параметра использовался интервал от нуля до бесконечности. Логика выбора именно такого диапазона заключается в следующем. Поскольку в качестве критерия мы использовали математическое ожидание прибыли, то было вполне естественным не рассматривать ту часть диапазона значений параметра, где ожидаемая прибыль отрицательна. Для параметра «порог критерия» диапазон значений был определен от 0 до 50 %. Нижний предел обусловлен тем, что данный параметр не может быть отрицательным. Верхний же предел объясняется невозможностью практического использования страйков, отстоящих слишком далеко от текущей цены базового актива (в силу их низкой ликвидности и широких спредов).
Наилучшим методом прямой оптимизации является расчет целевой функции для всех допустимых значений параметра (метод полного перебора). Однако на практике такой подход оказывается в большинстве случаев нереализуем по причине того, что количество допустимых значений может быть слишком большим. Если параметр является целочисленным, то количество его значений конечно (в пределах допустимого диапазона, не включающего бесконечности). Тем не менее даже в этом случае полный перебор всех значений может потребовать неоправданно большого количества расчетов и времени. В случае же если параметр является непрерывной величиной, то количество принимаемых им значений бесконечно вне зависимости от диапазона допустимых значений. В такой ситуации необходимо задать некоторый шаг изменения его значения (мы будем называть его «шагом оптимизации») и исследовать параметр, каждый раз изменяя его на величину шага. Чем больше величина шага, тем меньше времени потребуется для оптимизации. Однако при использовании слишком широкого шага возрастает риск пропуска глобального максимума (острый пик может оказаться в промежутке между двумя значениями параметра).
Форма оптимизационного пространства влияет самым непосредственным образом на результаты процедуры оптимизации и на ее эффективность. При одномерной оптимизации (когда имеется всего один параметр) оптимизационное пространство может быть представлено в виде линии с координатами, соответствующими значениям параметра (ось X ) и целевой функции (ось Y ). Если эта линия имеет единственный глобальный максимум, то целевая функция (и оптимизационное пространство)является унимодальной. Если, помимо глобального максимума, целевая функция имеет один или несколько локальных максимумов, то она называется полимодальной. Если целевая функция имеет приблизительно одинаковые значения на всем диапазоне значений параметра, то она является безмодальной и вряд ли может быть эффективно использована для оптимизации данного параметра.
В случае двумерной оптимизации (когда имеются два параметра) оптимизационное пространство может быть легко представлено в виде поверхности. Такую поверхность удобно изображать в виде топографической карты, оси которой соответствуют параметрам, а высотные отметки – целевой функции. Унимодальная поверхность будет иметь одну вершину, а полимодальная – множество таких возвышений. Более или менее плоская поверхность является безмодальной и малопригодной для оптимизации.
В трехмерном случае моды представляют собой области высоких значений всех трех параметров. Их можно изобразить в трехмерном пространстве, как участки с повышенной плотностью. (Хотя такое представление является достаточно условным и не совсем точным.) В случаях с более высокой размерностью невозможно представить оптимизационное пространство топологически, но это и необязательно, поскольку расчетные алгоритмы не нуждаются в нашем воображении.
Большинство методов оптимизации лучше всего приспособлены к поиску глобального максимума унимодального пространства. При наличии в пространстве параметров локальных максимумов, многие методы достигают решения, которое может не оказаться наилучшим.
Оптимизационное пространство обладает рядом свойств, оказывающих существенное влияние на поиск оптимальных решений. Среди них следует отметить два основных. Первое – это гладкость оптимизационного пространства . В двумерном случае гладкость обозначает отсутствие большого количества небольших локальных максимумов, делающих поверхность «холмистой». В предельных случаях оптимизационное пространство может быть либо абсолютно гладким (с единственным экстремумом), либо полностью изломанным с большим количеством острых пиков и впадин (в двумерном случае). Очевидно, гладкое пространство является предпочтительным с точки зрения эффективности оптимизации. Холмистое пространства повышает риск остановки процедуры оптимизации на локальном экстремуме. Далее мы покажем (раздел 2.7.2), что чем более гладким является пространство, тем выше эффективность применения различных методов оптимизации и тем больше вероятность нахождения наилучшего решения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу