Получение наибольшего количества полос, выявление более мелких полос в пределах более крупных позволяет повысить надежность идентификации не только отдельных хромосом, но и районов внутри хромосом. Последнее очень важно, поскольку дает возможность следить за судьбой этих районов при их перемещении по кариотипу (так называется хромосомный набор] в ходе эволюции. Сама эта работа — получение максимальной полосатости — во многом остается искусством. Поэтому тот, кто получит больше полос, считает себя чемпионом и очень этими полосами гордится.
Довольно любопытно было бы узнать, в какой хромосоме и в каком участке ее находится тот или иной ген. Оставим пока в стороне вопрос, зачем нам это знать. (Я вообще считаю этот вопрос глупым. Что значит, зачем знать? Затем, что это неизвестно!]. Разберемся сначала с тем, как это можно узнать.
По распределению полос вы можете легко опознать конкретные хромосомы в гибридных клетках. Например, в клеточных гибридах хомяка с кошкой. Нет, конечно, кошку с хомяком никто не скрещивал. Речь идет именно о клеточных гибридах. Как их получить? Нужно взять культуры фибробластов (активно делящихся клеток соединительной ткани) обоих видов и смешать их. Существуют методы, облегчающие слияние этих клеток друг с другом. Из этого слияния и получаются гибриды клеток, содержащие хромосомы обоих видов: кошки и хомяка. В процессе клеточных делений при культивировании гибридных клеток в питательной среде происходит постепенная утеря тех или иных хромосом. Чьи (кошачьи или хомячьи) и какие именно (первая, вторая или десятая) хромосомы теряются, мы можем установить по специфическому рисунку полосатости оставшихся хромосом.
Что это дает для решения задачи картирования? Допустим, мы обнаружили, что в гибридном клоне №1232 (клоном мы называем группу клеток, которая возникла в результате деления одной- единственной клетки) утеряна Л1-хромосома кошки. Проведя биохимический анализ клеток этого клона, мы установили, что в них присутствует только хомячий вариант фермента эстеразы D, а кошачий утерян. Тогда логично сделать вывод, что именно в Al- хромосоме локализован ген, кодирующий структуру этого фермента.
В последнее время получил распространение и другой подход к картированию. Были выделены или искусственно синтезированы фрагменты ДНК, соответствующие тем или иным генам. Показано, что гены, выполняющие одинаковые функции у разных видов, имеют идентичную или чрезвычайно сходную последовательность оснований в ДНК. Такие гены называют гомологичными. Как можно проверить гомологию двух фрагментов ДНК? Довольно просто. Нам не нужно расшифровывать последовательность каждого' из них. Если последовательности гомологичны, то они в подходящих условиях будут гибридизоваться друг с другом: образовывать двойную спираль гибридной молекулы ДНК. Более того, оказалось, что эти фрагменты могут гибридизоваться и с гомологичными участками ДНК в фиксированных хромосомах прямо на предметном стекле. Именно на этой особенности базируется метод картирования хромосом гибридизацией с генами, мечеными радиоактивными изотопами.

Хромосомные карты домашней кошки.
Слева — схемы хромосом кошки, справа — списки генов, для которых определено место их локализации на хромосомах.
Пусть у нас есть человеческий ген, например, коллагена. Мы метим его изотопом водорода - тритием, и затем наносим на препарат фиксированных хромосом кошки. Этот фрагмент ДНК будет преимущественно гибридизоваться с теми районами ДНК кошки, где находятся гомологичные последовательности. По засвечиванию фотоэмульсии над местом связывания нашего меченого фрагмента мы можем картировать интересующий нас ген в совершенно определенном районе совершенно определенной хромосомы кошки.
В последние годы метод картирования генов, основанный на гибридизации фрагментов ДНК с ДНК хромосом, получил очень широкое распространение. Только вот радиоактивными изотопами для этого уже практически не пользуются. Их заменили безопасные и гораздо более красивые флуоресцентные метки. Фотографии препаратов хромосом, полученных с использованием флуоресцентных красителей, можно увидеть на сайте Института цитологии и генетики СО РАН http://www.bionet.nsc.ru/microscopy/pages/photos.html
С помощью этих и других методов на сегодняшний день Савгуст 2008) на генетической карте кошке локализовано 1793 гена. Показать их на одном рисунке абсолютно невозможно. Если вас интересует положение того или иного гена, вы можете найти его в базе данныхпо генам кошки по адресу
Читать дальше