Напомним, что нормальное распределение однозначно определяется двумя независимыми параметрами — средним значением и дисперсией. Иными словами, если признак распределен в каждой популяции по нормальному закону, то при переходе от одной популяции к другой сигма и среднее значение должны изменяться независимо. Выходит, что наша первоначальная интерпретация средового влияния как суммарного действия большого числа легких независимых толчков не совсем точна. Правда, уже со времен создателя биометрии Ф. Гальтона известно, что при измерении признака логарифмической шкалой связь между сигмой и средним значением зачастую теряется. Если обозначить сдвиг значения признака X, измеренного обычной (арифметической) шкалой, как ΔХ, то отношение этого сдвига к величине признака (его относительный сдвиг) примерно равно изменению признака, измеренного в логарифмическом масштабе, поскольку
ΔX / X ≈ ΔlnX. (4.15)
Распределение, которое становится нормальным после логарифмирования значения случайной величины, называется логарифмически-нормальным. Его характерной особенностью является линейная связь между сигмой и средним значением. Вообще говоря, логарифмически-нормальное распределение совсем не симметрично и обладает длинным «хвостом», плавно спускающимся в сторону увеличения признака. Однако так оно выглядит при большом размахе изменчивости признака в арифметической шкале (например, в 10 раз). Если же такой диапазон значительно скромнее (скажем, только в 1,5 раза), то распределение по признаку в обеих шкалах выглядит очень сходным, и даже в арифметической шкале не слишком отличается от нормального. Поэтому при анализе особей одной популяции, когда размах изменчивости невелик, логарифмически-нормальные распределения выглядят как нормальные.
Опыт биометрии свидетельствует, что наследование количественных признаков, измеренных с помощью логарифмической шкалы, часто удовлетворяет аддитивной модели. Это означает, что межлинейное различие по величине логарифма признака можно трактовать как сумму эффектов аллельных замещений по ряду локусов. Заметим, что логарифм числа представим в виде суммы близких по величине слагаемых, когда само это число является произведением близких по значению сомножителей. Выходит, что замещение слабого аллеля на сильный в локусе, ответственном за развитие количественного признака, ведет к увеличению его генотипического значения в какое-то число раз. Причем это число не слишком различается при аллельных замещениях в разных локусах.
Ответ на искусственный отбор
Сначала рассмотрим, что кроется под таким образным понятием, как давление искусственного отбора. Проще всего под ним понимать долю отбракованных особей ( I ), обычно измеряемую в процентах:
I = (N 0/ N) 100 %, (4.16)
где N — численность популяции до отбора; N 0 — число отбракованных особей. Недостаток формулы (4.16) состоит в отсутствии какой-либо информации о признаке, по которому ведется отбор. Эту сторону работы селекционера передает так называемый селекционный дифференциал (S), который определяется как разница средних значений признака в исходной популяции (до браковки) ( М ) и у «счастливцев», отобранных для развода (М с), т. е.
S = M c— M. (4.16)
Аналогично можно ввести представление об ответе популяции на отбор (R) как о сдвиге среднего значения популяции за одно поколение отбора:
R = M' c— M , (4.18)
где M' c — среднее значение признака у потомков «счастливцев».
Большой экспериментальный материал свидетельствует, что ответ на отбор прямо пропорционален селекционному дифференциалу. Следовательно, чем сильнее давление отбора, тем больше величина ответа на него. Величина этого ответа — внутреннее (генетически обусловленное) свойство популяции. Его количественной мерой является наследуемость — коэффициент пропорциональности ( h 2 ), связывающий ответ на отбор с селекционным дифференциалом. Итак, при ответе конкретной популяции на отбор по конкретному количественному признаку выполняется равенство
R = h 2S. (4.19)
Наследуемость разных признаков у особей одной популяции может существенно различаться. Кроме того, может различаться и наследуемость одного и того же признака в разных популяциях одного вида. Что же лежит в основе этого явления?
Пусть мы имеем дело с популяцией, состоящей из генетически идентичных особей. Многократно показано, что при любом давлении отбора среднее значение любого признака в следующем поколении практически не изменяется ( h 2 = 0). Впервые это было продемонстрировано в знаменитом эксперименте В. Иогансена на чистых линиях фасоли. Иными словами, наследуемость равна нулю, если равна нулю генетическая компонента изменчивости.
Читать дальше