9.1.1. Частотный спектр прямоугольного напряжения
Шаг 1Начертите, используя источник напряжения типа VPULSE, схему для выработки прямоугольного напряжения, изображенную на рис. 9.1. Сохраните эту схему в папке Projects под именем FOURIER1.sch и запустите процесс ее моделирования, задав такие же параметры анализа переходных процессов, как показано на рис. 9.2.
Рис. 9.1. Электросхема для выработки прямоугольного переменного напряжения
Рис. 9.2. Окно Transientс предварительными установками для анализа
Шаг 2По окончании моделирования выведите на экран PROBE диаграмму, изображенную на рис. 9.3.
Рис. 9.3. Пятнадцать периодов прямоугольного переменного напряжения с частотой f=1 кГц
Вы можете прямо из программы PROBE запустить анализ Фурье для любой изображенной на ее экране временной функции. При выполнении анализа Фурье программа PSPICE исходит из того, что рассчитываемая при моделировании функция периодически повторяется независимо от того, какую ее часть вы в данный момент отобразили на экране PROBE. То есть вы обязательно должны следить за тем, чтобы для исследуемой функции был смоделирован или только один период, или целочисленное кратное количество периодов. [32] В случае, если вы по каким-то причинам не хотите моделировать целочисленное кратное количество периодов, то тогда перед проведением анализа Фурье ограничьте область данных, которые будут использованы для спектрального анализа. Чтобы это сделать, нужно открыть из меню PROBE Plot окно X Axis Settings и, активизировав опцию Restricted (Ограниченный), указать диапазон данных, сокращенный до целого числа периодов.
В нашем случае с помощью анализа переходных процессов (см. рис. 9.3) было проведено моделирование ровно пятнадцати периодов колебания, следовательно, полученные данные без всяких ограничений подходят для корректного анализа Фурье.
Шаг 3Запустите анализ Фурье (на низкоскоростных компьютерах его выполнение зачастую занимает много времени) с помощью кнопки
.
После того как вы приведете в соответствие оси координат частоты (команда Plot→X Axis Settings), должна получиться диаграмма с результатами проведенного анализа, аналогичная той, которую вы видите на рис. 9.4.
Рис. 9.4. Спектр Фурье прямоугольного переменного напряжения с частотой f=1 кГц
Кнопка FFTпозволяет не только производить запуск анализа Фурье, но и переключаться по его завершении от изображения временного диапазона к частотной области и наоборот.
Шаг 4Щелкните несколько раз по кнопке FFT, чтобы понять, как можно с ее помощью переходить от одной диаграммы к другой.
Порой вычисления, которые проводит PSPICE в ходе анализа Фурье, длятся так долго, что у пользователя появляется достаточно времени, чтобы предаться мечтам о более быстром процессоре. И это несмотря на то, что в настоящее время PSPICE для выполнения таких расчетов использует алгоритм Fast Fourier Transformation (FFT), то есть алгоритм быстрого преобразования Фурье (БПФ). А ведь еще десять лет назад, во времена 286-ых процессоров с тактовой частотой 12 МГц, проведение подобных анализов было доступно только тем электронщикам, которые имели доступ к супердорогим ЭВМ.
Для того чтобы ускорить расчеты, можно, конечно, провести анализ Фурье в уменьшенном временном интервале. Теоретически, для выполнения анализа Фурье достаточно и одного единственного периода колебаний. На рис. 9.5 представлен результат анализа уже исследованного вами прямоугольного переменного напряжения (был использован временной интервал всего одного периода — проведено моделирование от 0 до 1 мс). Рассчитанные PSPICE контрольные точки распределены с интервалом в 1/1 мс=1 кГц. На диаграмме, изображенной на рис. 9.4, расстояние между контрольными точками анализа составляет примерно 1/(15×1 мс)=66.6 Гц.
Рис. 9.5. Результат Фурье-анализа схемы, изображенной на рис. 9.1
Читать дальше