Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 314 Примеры работы со специальными математическими функциями На рис - фото 178

Рис. 3.14. Примеры работы со специальными математическими функциями

На рис. 3.14 показаны примеры разложения специальных функций в ряды и применения функции convert для их преобразования. Любопытно отметить, что в двух первых примерах рис. 3.14 вывод оказался иным, чем в предшествующих версиях Maple. Да и в них вывод для этих примеров отличался. Это говорит о непрерывной работе разработчиков над алгоритмами символьных вычислений и необходимости переработки примеров при переходе от одной версии Maple к другой.

3.3.3. Построение графиков специальных функций

Много информации о поведении специальных функций дает построение их графиков. На рис. 3.15 показано построение семейства графиков функций Бесселя BesselJ разного порядка и гамма-функции. Эти функции относятся к числу наиболее известных. Если читателя интересуют те или иные специальные функции, следует прежде всего построить и изучить их графики.

Рис 315 Графики функций Бесселя и гаммафункции 334 Консультант по - фото 179

Рис. 3.15. Графики функций Бесселя и гамма-функции

3.3.4. Консультант по функциям

Математикам, серьезно работающим с функциями, большую помощь может оказать имеющийся в составе Maple 9.5 консультант по функциям, вводимый командой:

FunctionAdvisor()

FunctionAdvisor(topics, quiet)

FunctionAdvisor(Topic, function, quiet)

Здесь: topics — строковый параметр, задающий вывод тематической информации, quiet — строковый параметр, указывающий на вывод вычислительных данных, Topic — задание темы и function — задание имени функции или класса функций.

Команда FunctionAdvisor() выводит правила применения консультанта по функциям (файл funcadv):

> FunctionAdvisor(); The usage is as follows:

> FunctionAdvisor( topic, function, ... );

where 'topic' indicates the subject on which advice is required, 'function' is the name of a Maple function, and '...' represents possible additional input depending on the 'topic' chosen. To list the possible topics:

> FunctionAdvisor( topics ); A short form usage,

> FunctionAdvisor(function);

with just the name of the function is also available and displays a summary of information about the function.

Следующие примеры показывают вывод определений функций Бесселя:

> FunctionAdvisor(describe, Bessel);

BesselI = Modified Bessel function of the first kind,

BesselJ = Bessel function of the first kind,

BesselK = Modified Bessel function of the second kind,

BesselY = Bessel function of the second kind

> FunctionAdvisor(describe, BesselJ);

BesselJ = Bessel function of the first kind

В следующем примере выводится информация о представлении функции синуса в виде ряда, представленного суммой его членов:

> FunctionAdvisor(sum_form, sin);

Еще один пример показывает вывод интегрального представления синусного - фото 180

Еще один пример показывает вывод интегрального представления синусного интеграла Френеля:

> FunctionAdvisor(integral form, FresnelS);

Представленные примеры дают представление лишь о малой части возможностей - фото 181

Представленные примеры дают представление лишь о малой части возможностей консультанта по функциям. С этим мощным средством получения информации о функциях можно дополнительно познакомиться по справке о нем, содержащей множество интересных примеров применения консультанта по функциям.

3.4. Работа с функциями пакетов расширения Maple

3.4.1. Работа с функциями пакета комбинаторики combinat

Функции комбинаторики достаточно известны из обычного курса математики. Но они применяются сравнительно редко. Поэтому они не включены в состав ядра системы, но имеются в пакете расширения combinat. При вызове пакета

> with(combinat);

выводится список имен его функций. Ввиду важности функций комбинаторики для некоторых специальных вычислений приведем их полные определения:

• Chi(x) — гиперболический косинусный интеграл;

• bell(n) — возвращает числа из решения уравнения ехр(ехр(х)-1)= sum(bell(n)/n!*x^n, n=0..infinity), причем для вычислений используется рекуррентное соотношение bell(n+1) = (bell(n)+1)^n;

• binomial(n, r) — возвращает биноминальные коэффициенты, причем, если n и r — целые числа, удовлетворяющие условию 0<=r<=n, то функция возвращает C(n,r)=n!/(r!(n-r)!), а в общем случае C(n, r) = limit(GAMMA(N+1)/ GAMMA(R+1)/GAMMA(N-R+1),R=r,N=n).

• composition(n, k) — возвращает списки композиций для целых неотрицательных n и k;

• fibonacci(n) — возвращает числа Фибоначчи, вычисляемые по рекуррентной формуле F(n) = F(n–1)+F(n –2), где F(0) = 0 и F(1)=1;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x