Рис. 3.12. Maplet-окно для изучения функций и построения их графиков
В окне в разделе определения функций Define Function имеется список элементарных функций, графики которых можно просматривать. Однако, возможно построение и графиков простых функций более сложного вида, например x*sin(x) вместо sin(x) — это и иллюстрирует график, представленный на рис. 3.12. Maplet-окно генерирует команду на Maple-языке, которая строит график заданной функции.
3.3. Работа со специальными функциями
3.3.1. Обзор специальных математических функций
Специальные математические функции являются решениями дифференциальных уравнений, которые невозможно представить через элементарные функции. Через такие функции нередко представляются и многие интегралы. Наиболее мощные из СКМ, например Maple, широко используют специальные математические функции в ходе символьных преобразований. Рассмотрим наиболее важные специальные математические функции.
Функция Эйри формирует пару линейно независимых решений дифференциального уравнения вида:
Связь между функцией Эйри и модифицированной функцией Бесселя выражается формулой:
где
Дифференциальное уравнение вида
где v — неотрицательная константа, называется уравнением Бесселя, а его решения известны как функция Бесселя. J(z)и J _ (z)формируют фундаментальное множество решений уравнения Бесселя для неотрицательных значений (так называемые функции Бесселя первого рода):
где для гамма-функции используется следующее представление:
Второе решение уравнения Бесселя, линейно независимое от J(z), определяется как
и задает функции Бесселя второго рода Y(z).
Функции Бесселя третьего рода (функции Ханкеля) и функция Бесселя связаны следующим выражением:
H (1) v ( z ) = J v ( z ) + iY v (z),
H (2) v ( z ) = J v ( z ) - iY v (z).
Дифференциальное уравнение вида
где v — неотрицательная константа — называется модифицированным уравнением Бесселя, и его решения известны как модифицированные функции Бесселя I(z)и I _ (z). K(z)— второе решение модифицированного уравнения Бесселя, линейно независимое от I(z). I(z)и K(z)определяются как:
и
Бета-функция определяется как:
где Г(z) — гамма-функция. Неполная бета-функция определяется интегральным выражением:
Эллиптические функции Якоби определяются интегралом:
В некоторых случаях при определении эллиптических функций используются модули k вместо параметра m. Они связаны выражением:
k² = m = sin² α.
Полные эллиптические интегралы первого и второго рода определяются следующим образом:
Функция ошибки (интеграл вероятности) определяется следующим образом:
Читать дальше
Конец ознакомительного отрывка
Купить книгу