Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

define(oper, property1, property2, ...)

Здесь oper — имя определяемого оператора, property1, property2 и т.д. — наименования свойств. В принципе оператор define позволяет создавать операторы с новыми свойствами, которые отсутствуют у операторов и функций, встроенных в систему. Могут быть указаны следующие свойства операторов:

unary — унарный оператор;

binary — бинарный оператор;

diff — дифференциальный оператор;

linear — линейный оператор;

multilinear — множественный линейный оператор;

flat — ассоциативный оператор, для которого f(х,f(y,z)) = f(f(х, y), z) =f (х, у, z);

orderless — коммутативный симметричный оператор, такой что f(х, y) = f(y, х); antisymmetric — асимметричный оператор, такой что f(х, y) = -f(у, х); zero — нулевой оператор (например, V:=Vector(5,shape=zero) задает вектор с 5 нулевыми элементами);

identity — единичный оператор (например, M:=Matrix(3,3,shape=identity) задает единичную матрицу).

Следующий пример задает линейный оператор L:

> define(L,linear);

> L(а*х+b*х^2+с*х^3);

L(ax) + L(bx²) + L(cz³)

Для задания некоторых свойств операторов можно использовать уравнения и соотношения вида f(x)=value. Чтобы свойство выполнялось для всех аргументов (или некоторого класса аргументов), используется описание forall. Так, приведенный ниже пример задает оператор F, который вычисляет n- е число Фибоначчи (n>2):

> restart;

> define(fib,fib(0)=1,fib(1)=1,fib(n::posint)=fib(n-1)+fib(n-2));

> fib(6);

13

> fib(10);

89

> fib(20);

10946

Обратите внимание на то, что соотношения fib(0)=1 и fib(1)=1 задают начальные значения целочисленного массива чисел Фибоначчи, которые нужны для реализации обычного итерационного алгоритма их нахождения — напоминаем, что очередное число Фибоначчи равно сумме двух предшествующий чисел Фибоначчи.

3.2. Работа с математическими функциями

3.2.1. Понятие о функциях

Более двух сотен лет тому назад в обиход математиков пришло понятие функции, как некоторой зависимости одной величины, например f или у, от другой величины — независимой переменной х или t. Функции стали обозначать как f(x), f(t), y(x) и т.д. Могут быть и функции ряда переменных, например вида f(х, у, z , …). Хотя эти понятия не являются полными, мы ограничимся ими, помня, однако, что функции могут быть определены в различных интервалах изменения их аргументов.

В Maple функция это имеющий уникальное имя (идентификатор) объект математического выражения, выполняющий некоторое преобразование своих входных данных, представленных списком входных параметров . Суть этого преобразования соответствует некоторой функциональной зависимости возвращаемого функцией значения от входных параметров функции. Например, функция sin(x) возвращает значение, которое является синусом входного параметра х. Таким образом, признаком функции является возврат ею некоторого значения.

Входные параметры изначально являются формальными и представляются именами некоторых переменных. Особенностью функции является возврат ее значения в ответ на обращение к функции по имени с указанием фактических параметров в списке параметров функций. Фактические параметры могут быть различными константами, определенными переменными и даже вычисляемыми математическими выражениями.

К примеру, sin(x) является синтаксической формой записи математической функции синуса — sin(x). При этом х — формальный параметр. А уже в выражении sin(1.0) числовая константа 1.0 является фактическим параметром в виде вещественного числа, причем sin(1.0) возвращает численное значение синуса угла в 1 радиан. Функция atan2(x, y) является примером функции, имеющей список из двух формальных параметров — х и у.

Как правило, в системах символьной математики принципиально важно, как записан фактический параметр. Например, число 1. или 1.0 является вещественным, на что указывает разделительная точка. Если число представлено в виде 1, то оно рассматривается как целое и константа. Большинство систем символьной математики не вычисляет выражения вида sin(1) или sin(π/2), а выводит их в исходном виде. Это связано с тем, что такой вид дает о значении функции гораздо больше информации, чем просто ее вычисленное значение.

Благодаря свойству возврата значений функции применяются для построения математических выражений наряду с операторами. Например, математическое выражение 2*sin(x) содержит функцию sin(x) и оператор умножения *. Математические выражения могут быть как очень простыми (наподобие приведенного), так и очень сложными, включающими в себя операторы интегрирования, дифференцирования и иные специальные операторы и функции, а также сложную многоуровневую систему скобок.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x