Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Функции обычно подразделяются на четыре типа:

• встроенные в ядро системы предопределенные функции или внутренние функции;

• функции пользователя;

• библиотечные функции, вызываемые из пакетов или библиотек расширения системы, например sin(x) или ln(x);

• функции, заданные в виде программного модуля.

Кроме того, функции могут классифицироваться по характеру производимых ими преобразований входных параметров. Они делятся на алгебраические, тригонометрические, обратные тригонометрические, гиперболические, обратные гиперболические, специальные и так далее.

В математических системах Maple функции могут применяться со специальными директивами и опциями. Они могут задаваться как дополнительный параметр функции.

3.2.2. Математические выражения

Математические выражения это сложные (комбинированные) объекты, которые состоят из операторов, операндов и функций со списками их параметров. Например, в выражении (2+3)*sin(x) скобки ( ) и знаки + и * являются операторами, константы 2 и 3 — операндами, sin(x) — встроенной функцией, а х — входным параметром функции. Для оператора умножения выражение (2+3) и функция sin(x), т.е. по существу тоже выражение, являются операторами. Приоритет функций более высокий, чем у операторов.

В системах для численных расчетов математические выражения применяются в естественном виде и в разборе их структуры нет особой необходимости. Исключение составляет разве что анализ скобок, меняющих приоритет выполнения операций в выражениях.

Иное дела системы символьной математики. У них в ходе вычислений выражения эволюционируют , то есть видоизменяются по мере выполнения расчетов. Это может приводить к весьма неожиданным последствиям, например, когда сложнейшее выражение упрощается к 0 или 1, а внешне совсем не страшное выражение разворачивается так, что не помещается в десятке страниц экрана. Набор средств по разбору структуры и преобразованиям математических выражений в таких системах настолько велик, что всерьез разобраться с ними под силу математику-аналитику или достаточно опытному пользователю. Поэтому мы оставим рассмотрение функций анализа выражений на потом — оно будет дано при описании средств символьной математики.

3.2.3. Работа с элементарными функциями в системе Maple

Maple имеет полный набор элементарных математических функций [38–41]. Все они, кроме арктангенса двух аргументов, имеют один аргумент х, например sin(x). Он может быть целым, рациональным, дробно-рациональным, вещественным или комплексным числом. В ответ на обращение к ним элементарные функции возвращают соответствующее значение. Поэтому они могут быть включены в математические выражения. Все описанные здесь функции называются встроенными, поскольку они реализованы в ядре системы.

Как правило, если аргументом функции является фундаментальная константа, целое или рациональное число, то функция выводится с таким аргументом без получения результата в форме действительного числа с плавающей точкой. Например (файл calcfun):

> sin(Pi);

0

> sin(1);

sin(1)

> exp(1);

e

> ln(2);

ln(2)

> ln(Pi);

ln(π)

> arcsin(1/2);

картинка 128

> arcsin(1/3);

arcsin(⅓)

Нетрудно заметить, что есть и исключения из этого правила — например, на экране монитора ехр(1) будет выведено как константа е, а значение функции arcsin(1/2) все же вычислено и результат получен как 1/6 от константы Pi. Вообще говоря, если результат выражается через фундаментальную математическую константу, то он будет вычислен и представлен ею. В противном случае функция с целочисленным и рациональным аргументом или с константой просто повторяется в строке вывода в установленном для этой строки формате.

Для получения подробной информации о некоторой произвольной функции достаточно задать команду

> ?

Например, команда

> ? sin

открывает окно справки по тригонометрическим функциям, включая функцию синуса.

Ввиду общеизвестности элементарных функций мы не будем обсуждать ни их свойства, ни допустимые для них пределы изменения аргумента. Эти вопросы отражаются в любом учебнике по элементарной математике.

3.2.4. Некоторые целочисленные функции и факториал

Ниже представлены наиболее распространенные целочисленные функции Maple, используемые в теории чисел:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x