Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Жесткие системы дифференциальных уравнений, часто описывают кинетику химических процессов, например, растворение веществ в растворах или смешивание газов.

На рис. 7.24 показано решение жесткой системы из трех дифференциальных уравнений, описывающих один из типовых химических процессов — какой именно в данном случае не важно.

Рис 724 Решение жесткой системы дифференциальных уравнений описывающей - фото 896

Рис. 7.24. Решение жесткой системы дифференциальных уравнений, описывающей кинетику химического процесса

7.7.4. Решение дифференциального уравнения Ван-Дер Поля

Классическим примером нелинейного дифференциального уравнения второго порядка, относящегося к жесткому типу по большом значении некоторого параметра mu, относится уравнение Ван-Дер Поля. Важность этого уравнения заключается в том, что к нему довольно просто сводятся дифференциальные уравнения, описывающие динамику развития колебаний в различных колебательных системах, например, автогенераторах на электронных лампах, полевых и биполярных транзисторах.

Пример задания и решения дифференциального уравнения Ван-Дер Поля при сравнительно малом mu=1 (и при выборе метода решения по умолчанию) представлен на рис. 7.25. Нетрудно заметить, что выбор Maple пал на метод rkf45 и что этот метод не очень удачен даже для этого метода с mu=1. Хотя общая форма колебаний (близкая к синусоидальной, но все же заметно искаженная) в интервале t от 0 до 20 просматривается, уже в данном случае видна нестабильность колебаний. При увеличен максимального значения t до 100 и более, нестабильность колебаний становится весьма заметна (проверьте это сами).

Рис 725 Задание и решение дифференциального уравнения ВанДер Поля при - фото 897

Рис. 7.25 Задание и решение дифференциального уравнения Ван-Дер Поля при сравнительно малом mu=1

Задание и решение дифференциального уравнения Ван-Дер Поля при большом mu=2000 (рис. 7.26) демонстрирует существенное изменение формы временной зависимости колебаний и их параметров. Теперь отчетливо виден разрывный характер колебаний, типичный для релаксационных колебаний. Моделирование колебаний в этом случае методом rkf45 уже невозможно и потому для решения задана опция stiff=true. При этом Maple взял за основу метод Розенброка. Он обеспечивает более качественное моделирование в системе Ван-Дер Поля.

Рис 726 Задание и решение дифференциального уравнения ВанДер Поля при - фото 898

Рис. 7.26. Задание и решение дифференциального уравнения Ван-Дер Поля при большом mu=2000

Дополнительные примеры на решение жестких систем дифференциальных уравнений можно найти в разделах справки по решению таких уравнений.

7.7.5. Решение дифференциальных уравнении с двумя краевыми условиями

В решении ряда математических задач нужно найти решение дифференциального уравнения с двумя краевыми условиями. Например, в физике это задача стрельбы по летящей цели. Обычно такая задача решается методом пристрелки, при котором методом проб с итерационным уточнением рассчитывается ряд вариантов решения и выбирается тот, у которого соблюдается начальное условие в начале решения и начальное условие в конце решения с заданной (в частности по умолчанию) погрешностью.

Для такого решения используется функция dsolve в следующем виде:

dsolve(odesys, numeric, vars, options)

Здесь:

• odesys — множество или список обыкновенных дифференциальных уравнений и двойных граничных условии;

• numeric — опция, задающая решение в численном виде;

• vars — опционально заданный параметр, задающий имя переменной в odesys;

• options — опционально заданные равенства (в форме keyword=value), определяющие краевые условия.

Пример решения дифференциального уравнения второго порядка с двумя граничными условиями представлен на рис. 7.27. Отчетливо видно, что найденная зависимость точно удовлетворяет краевым условиям.

Рис 727 Пример решения дифференциального уравнения второго порядка с двумя - фото 899

Рис. 7.27. Пример решения дифференциального уравнения второго порядка с двумя граничными условиями

7.8. Решение дифференциальных уравнений с частными производными

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x