Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5.3.3. Оценка коэффициентов полинома по степеням

Полином может быть неполным, то есть не содержать членов со степенями ниже некоторой. Функция lcoeff возвращает старший, а функция tcoeff — младший коэффициент полинома нескольких переменных. Эти функции задаются в виде:

lcoeff(р)

tcoeff(р)

lcoeff(р, х)

tcoeff(р, х)

lcoeff(р, х, 't')

tcoeff(р, х, 't')

Функции lcoeff и tcoeff возвращают старший (младший) коэффициент полинома р относительно переменной х или ряда переменных при многомерном полиноме. Если х не определено, lcoeff (tcoeff) вычисляет старший (младший) коэффициент относительно всех переменных полинома p. Если третий аргумент t определен, то это имя назначено старшему (младшему) члену p. Если х — единственное неизвестное, и d — степень p по х, то lcoeff(p, x) эквивалентно coeff(p, x, d). Если х — список или множество неизвестных, lcoeff (tcoeff) вычисляет старший (младший) коэффициент p, причем p рассматривается как полином многих переменных. Имейте в виду, что p должен быть разложен по степеням неизвестного x до вызова функций lcoeff или tcoeff.

Приведем примеры применения функций lcoeff, tcoeff и coeffs (файл polan):

> q:=1/x^2+2/x+3+4*x+5*x^2;

lcoeffqx 5 lcoeffqxt 5 t x² - фото 530

> lcoeff(q,x);

5

> lcoeff(q,x,'t');

5

> t;

> coeffs(q,x,'t');

3, 1, 4, 2, 5

> t;

Maple 9510 в математике физике и образовании - изображение 531

5.3.4. Оценка степеней полинома

Функция degree возвращает высшую степень полинома, a ldegree — низшую степень. Эти функции задаются следующим образом:

degree(а,х)

ldegree(а, х)

Функции degree и ldegree используются, чтобы определить высшую и низшую степень полинома от неизвестного (неизвестных) х, которое чаще всего является единственным, но может быть списком или множеством неизвестных. Полином может иметь отрицательные целые показатели степеней при х. Таким образом, degree и ldegree могут возвратить отрицательное или положительное целое число. Если выражение не является полиномом от x сданным параметром, то возвращается FAIL.

Чтобы degree и ldegree возвратили точный результат, полином обязательно должен быть сгруппирован по степеням х. Например, для выражения (x+1)(х+2)-x^2 функция degree не обнаружит аннулирование старшего члена и неправильно возвратит результат 2. Во избежание этой проблемы перед вызовом degree следует применять к полиному функции collect или expand. Если х — множество неизвестных, degree/ldegree вычисляет полную степень. Если х — список неизвестных, degree/ldegree вычисляет векторную степень. Векторная степень определяется следующим образом:

degree(р,[]) = 0

degree(р,[x1,х2,...]) = degree(р,x1)

degree(lcoeff(р,x1),[х2,...])

Полная степень тогда определяется следующим образом:

degree(р, {x1, ...,xn}) = maximum degree(р,{x1,...xn))

или

degree(р,{x1,...,xn}) = degree(p,[x1,...,xn])

Обращаем внимание на то, что векторная степень зависит от порядка перечисления неизвестных, а полная степень не зависит. Примеры применения функций degree и ldegree:

> restart;

> р:=а4*х^4+a3*х^3+а2*х^2;

р:=а4 х 4+ a3 x 3+ а2 х 2

> degree(р,х);

4

> ldegree(р,х);

2

> q:=1/х^2+2/х+3+4*х+5*х^2;

degreeqх 2 ldegreeqх 2 degreexsinxx FAIL - фото 532

> degree(q,х);

2

> ldegree(q,х);

-2

> degree(x*sin(x),x);

FAIL

> zero := y*(x/(x+1)+1/(x+1)-1);

degreezeroxdegreezero y FAIL 1 - фото 533

> degree(zero,x);degree(zero, y);

FAIL
1

> degree(collect(zero,x,normal),x);degree(collect(zero,y, normal),y);

-∞
-∞

5.3.5. Контроль полинома на наличие несокращаемых множителей

Для контроля того, имеет ли полином несокращаемые множители, может использоваться функция irreduc(p) и ее вариант в инертной форме lreduc(p,K), где K — RootOf-выражение. Ниже приведены примеры применения этих тестовых функций:

> irreduc(х^2-1);

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x