Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5.1.7. Поиск минимума функций с ограничениями методом выпуклого программирования

Часто необходимо найти минимум некоторой функции при наличии ограничений на значения независимых переменных. Ниже рассматривается нетривиальная задача такого рода, решаемая методом выпуклого программирования (разновидность нелинейного программирования) — файл minp.

Пусть надо найти минимум функции f:=х1^2+(х2–1)^2 при следующих ограничениях: 2x1+х2>=7, x1+2*х2>=5, x1>=0 и х2>=0. Составим на основе этого функцию Лагранжа:

> F:=x1^2+(х2-1)^2+y1*(7-2*х1-х2)+y2*(5-х1-2*х2);

F:= x1² + (х2-1)² + у1(7-2х1-х2) + у2(5-х1-2х2)

и найдем ее частные производные:

> F1:=diff(F,x1);

F1:=2x1-2y1-y2

> F2:=diff(F,x2);

F2:=2x2 -2-y1-2y2

> F3:=dxff(F,y1);

F3:=7-2x1-x2

> F4:=diff(F,y2);

F4:=5-x1-2x2

Соберем воедино все равенства и неравенства этой задачи:

> eq:={Fl=u1,F2=u2,x1*F1,x2*F2,F3+v1,F4+v2,y1*F3,y2*F4,

x1>=0,x2>=0,y1>=0,y2>=0,u1>=0,u2>=0,v1>=0,v2>=0};

eq := {2x1-2y1-y2=u1, 2x2-2-y1-2y2=u2, 7-2x1-x2+v1, 5-x1-2x2+v2, y1(7-2x1-x2), y2(5-x1-2x2), x1(2x1-2y1-y2), x2(2x2-2-y1-2y2), 0≤x1, 0≤x2, 0≤y1, 0≤y2,0≤u1,0≤v1, 0≤v2, 0≤u2}

Первые шесть равенств соответствуют теореме Куна-Такера о том, что в точке минимума существуют целые неотрицательные числа u1, u2 , v1 и v2 для которых выполняются эти шесть равенств (обратите внимание на то, что запись только левой части равенства означает, что она приравнивается к 0). Теперь с помощью функции solve можно найти решение данной задачи:

> solve(eq,{x1,х2,y1,y2,u1,u2,v1,v2});

Таким образом на указанном множестве функция достигает минимума в точке 125 - фото 518

Таким образом, на указанном множестве функция достигает минимума в точке (12/5, 11/5).

5.1.8. Анализ функций на непрерывность

Для исследования функций на непрерывность (отсутствие разрывов) Maple имеет функцию iscont, записываемую в ряде форм:

iscont(expr, х = а..b)

iscont(expr, х = а..b, 'closed')

iscont(expr, х = а..b, 'open')

Она позволяет исследовать выражение expr, заданное в виде зависимости от переменной х, на непрерывность. Если выражение непрерывно, возвращается логическое значение true, иначе — false. Возможен также результат типа FAIL. Параметр 'closed' показывает, что конечные точки должны также проверяться, а указанный по умолчанию параметр 'open' — что они не должны проверяться.

Работу функции iscont иллюстрируют следующие примеры (файл fanal):

> iscont(1/х^2,х=-1..1);

false

> iscont(1/х^2,х=-1..1,'closed');

false

> iscont(1/x,х=0..1);

true

> iscont(1/x,x=0..1,'closed');

false

> iscont(1/(x+a),x=-1..1);

FAIL

Рекомендуется внимательно присмотреться к результатам этих примеров и опробовать свои собственные примеры.

5.1.9. Определение точек нарушения непрерывности

Функции, не имеющие непрерывности, доставляют много хлопот при их анализе. Поэтому важным представляется анализ функций на непрерывность. Начиная с Maple 7, функция discont(f,x) позволяет определить точки, в которых нарушается непрерывность функции f(x). Она вычисляет все точки в пределах изменения х от –∞ до +∞. Результаты вычислений могут содержать особые экстрапеременные с именами вида _Zn~ и _NNn~. В частности, они позволяют оценить периодические нарушения непрерывности функций. Примеры применения функции discont приведены ниже (файл fanal):

> discont(1/(х-2),х);

{2}

> discont(1/((х-1)*(х-2)*(х-3)),х);

{1, 2, 3}

> discont(GAMMA(х/2),х);

{-2_NN1~}

Весьма рекомендуется наряду с применением данной функции просмотреть график анализируемой функции.

Еще раз полезно обратить внимание на то, что в ряде примеров в выводе используются специальные переменные вида _NameN~ , где Name — имя переменной и N — ее текущий номер. После выполнения команды restart отсчет N начинается с 1. Если вывод с такими переменными уже применялся, то их текущие номера могут казаться произвольными. Специальные переменные часто используются для упрощения выводимых выражений.

5.1.10. Нахождение сингулярных точек функции

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x