Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании

Здесь есть возможность читать онлайн «Владимир Дьяконов - Maple 9.5/10 в математике, физике и образовании» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2006, ISBN: 2006, Издательство: СОЛОН-Пресс, Жанр: Программы, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Maple 9.5/10 в математике, физике и образовании: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Maple 9.5/10 в математике, физике и образовании»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга является справочником и руководством пользователя по новейшим системам символьной (аналитической) математики — Maple 9.5 и Maple 10. Это признанные мировые лидеры в области аналитических вычислений, прошедшие серьезную сертификацию в этой области. Кратко описан интерфейс систем и подробно их обширные возможности в математике, физике и образовании. Особое внимание уделено технике практических вычислений и визуализации их результатов, а также решению дифференциальных уравнений различного типа. Описаны средства символьных и численных вычислений, графические и программные возможности систем, пакеты их расширения, маплеты и практика применения Maple в математических и физических расчетах. Прилагаемый CD-ROM содержит более 340 файлов с примерами вычислений. Для научно-технических работников, студентов и преподавателей университетов и вузов.

Maple 9.5/10 в математике, физике и образовании — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Maple 9.5/10 в математике, физике и образовании», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

periodmatrix(f, х, у, opt) — вычисляет периодическую матрицу кривой;

plot_knot(f,x,y,opt) — строит узел — несамопересекающуюся замкнутую кривую в трехмерном евклидовом пространстве;

puiseux(f,x=p,y,n,T) — определяет Пуизе-расширение алгебраической функции (может иметь и более простые формы записи);

singularities(f,x,y) — анализирует кривую на сингулярность.

4.10.2. Примеры работы с алгебраическими кривыми

Приведем также примеры применения функций пакета Algcurves (файл algcurve):

> Weierstrassform((y^2-1)^2+x*(x^2+1)^2, x,y,x0,y0);

fу3х3у3х4 f y 3 y 3x 3 x 4 differentialsf х у - фото 450

> f:=у^3+х^3*у^3+х^4;

f := y 3+ y 3x 3+ x 4

> differentials(f, х, у);

differentialsfxуskipdx x² yx yx² nops 3 genusf x - фото 451

> differentials(f,x,у,skip_dx);

[x², yx, yx²]

> nops(%);

3

> genus(f, x, y);

3

> homogeneous(f, x, y, z);

x 4z 2+y 3x 3+у 3x 3

> g := y^3-х*y^2+2*2^(1/2)*y^2+х^2-2*2^(1/2)*х+2+y^6;

g := y 3- xy 2+ 2√2 у 2+ x 2- 2√2x + 2 + y 6

> integral_basis(g,x,y);

ishyperellipticf x y false f1у2х51ishyperellipticf1 x - фото 452

> is_hyperelliptic(f, x, y);

false

> f1:=у^2+х^5+1:is_hyperelliptic(f1, x, y);

true

> j_invariant(g,x,y);

parametrizationх4y4ах2y2by3хyt Z - фото 453

> parametrization(х^4+y^4+а*х^2*y^2+b*y^3,х,y,t);

Z periodmatrixf1хуRiemann 4103 Построение алгебраических - фото 454

> Z := periodmatrix(f1,х,у,Riemann);

4103 Построение алгебраических кривых класса knot Функция plotknot - фото 455

4.10.3. Построение алгебраических кривых класса knot

Функция plot_knot позволяет строить одну или несколько алгебраических кривых — узлов. Пример построения целого семейства узлов показан на рис. 4.37.

Рис 437 Семейство узлов Для лучшего обзора таких кривых рекомендуется - фото 456

Рис. 4.37. Семейство узлов

Для лучшего обзора таких кривых рекомендуется воспользоваться возможностью вращения трехмерных фигур мышью для уточнения угла, под которым рассматривается фигура — в нашем случае семейство алгебраических кривых.

Начиная с версии Maple 7 в пакет расширения Algcurves добавлена новая функция импликативной графики plot_real_curve. Она строит алгебраическую кривую для действительной части полиномиального выражения и записывается в виде:

plot_real_curve(р, х, у, opt)

Функция имеет следующие параметры:

p — полиномиальное выражение переменных x и у задающее алгебраическую кривую;

opt — параметр, который может быть записан в форме приведенных ниже выражений:

showArrows=true или false — задает показ стрелок касательных или перпендикулярных к точкам вдоль кривой (по умолчанию false);

arrowIntervalStep=posint — задает число точек, пропускаемых до показа очередной пары стрелок (по умолчанию 10);

arrowScaleFactor=positive — задает масштаб для длины стрелок (по умолчанию 1);

colorOfTangentVector=с — задает цвет касательных стрелок, по умолчанию заданный как зелёный, COLOR(RGB,0,1.0);

colorOfNormalVector=с — задает цвет перпендикулярных стрелок, по умолчанию заданный как красный, COLOR(RGB,1,0,0);

colorOfCurve=с — задает цвет кривой, по умолчанию заданный как синий, COLOR(RGB, 0, 0, 1);

eventTolerance=positive — задает погрешность при представлении сингулярных точек (по умолчанию 0,01).

NewtonTolerance=positive — задает погрешность при выполнении ньютоновских итераций в ходе построений.

Функция plot_real_curve вычисляет и строит алгебраическую кривую по точкам. Применение функции plot_real_curve показывает рис. 4.38.

Рис 438 Примеры применения функции plotrealcurve 411 Векторные - фото 457

Рис. 4.38. Примеры применения функции plot_real_curve

4.11. Векторные вычисления и функции теории поля

4.11.1. Пакет векторных вычислений VectorCalculus

В Maple 8 были существенно расширены возможности вычислений над векторами (пространственными объектами) и поверхностями. Для этого введен пакет VectorCalculus, который, при вызове, открывает доступ ко многим командам и функция векторного анализа, теории поля и приложений дифференциального исчисления [67, 68] (файл vc):

> restart; with(VectorCalculus); interface(showassumed=0);

Warning, the assigned names <,> and <|> now have a global binding

Warning, these protected names have been redefined and unprotected:

*, +, Vector, diff, int, limit, series

[&x, *, +, ., <, >, <|>, AddCoordinates, ArcLength, BasisFormat, Binormal, CrossProduct, Curl, Curvature, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, Gradient, Hessian, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, PathInt, PrincipalNormal, RadiusOfCurvature, ScalarPotential, SetCoordinateParameters, SetCoordinates, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, Wronskian, diff, evalVF, int, limit, series]

Нетрудно заметить, что данный пакет после загрузки видоизменяет многие операторы, команды и функции, встроенные в ядро системы. При этом меняется их математический и физический смысл. Поэтому пользоваться пакетом надо с известной осторожностью. Для восстановления роли функций можно использовать команду restart.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Maple 9.5/10 в математике, физике и образовании»

Представляем Вашему вниманию похожие книги на «Maple 9.5/10 в математике, физике и образовании» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Maple 9.5/10 в математике, физике и образовании»

Обсуждение, отзывы о книге «Maple 9.5/10 в математике, физике и образовании» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x