Владстон Феррейра Фило - Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]

Здесь есть возможность читать онлайн «Владстон Феррейра Фило - Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: СПб., Год выпуска: 2018, ISBN: 2018, Издательство: Питер, Жанр: Программирование, Прочая околокомпьтерная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Хватит тратить время на скучные академические фолианты! Изучение Computer Science может быть веселым и увлекательным занятием.
Владстон Феррейра Фило знакомит нас с вычислительным мышлением, позволяющим решать любые сложные задачи. Научиться писать код просто — пара недель на курсах, и вы «программист», но чтобы стать профи, который будет востребован всегда и везде, нужны фундаментальные знания. Здесь вы найдете только самую важную информацию, которая необходима каждому разработчику и программисту каждый день. cite
Владстон Феррейра Фило

Теоретический минимум по Computer Science [Все что нужно программисту и разработчику] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 45Дерево происхождения индоевропейских языков Рис 46Листья этого - фото 170

Рис. 4.5.Дерево происхождения индоевропейских языков

Рис 46Листья этого дерева представляют современные языки Двоичное дерево - фото 171

Рис. 4.6.Листья этого дерева представляют современные языки

Двоичное дерево поиска

Двоичное дерево поиска (binary search tree) — это особый тип дерева, поиск в котором выполняется особенно эффективно. Узлы в двоичном дереве поиска могут иметь не более двух дочерних узлов. Кроме того, узлы располагаются согласно их значению/ключу. Дочерние узлы слева от родителя должны быть меньше него, а справа — больше (рис. 4.7).

Рис 47Пример двоичного дерева поиска Если дерево соблюдает это свойство в - фото 172

Рис. 4.7.Пример двоичного дерева поиска

Если дерево соблюдает это свойство, в нем легко отыскать узел с заданным ключом/значением:

function find_node(binary_tree, value)

node ← binary_tree.root_node

····while node

········if node.value = value

············return node

········if value > node.value

············node ← node.right

········else

············node ← node.left

····return "NOT FOUND"

Чтобы вставить элемент, находим последний узел, следуя правилам построения дерева поиска, и подключаем к нему новый узел справа или слева:

function insert_node(binary_tree, new_node)

····node ← binary_tree.root_node

····while node

········last_node ← node

········if new_node.value > node.value

············node ← node.right

········else

············node ← node.left

····if new_node.value > last_node.value

········last_node.right ← new_node

····else

········last_node.left ← new_node

Балансировка дерева.Если вставить в двоичное дерево поиска слишком много узлов, в итоге получится очень высокое дерево, где большинство узлов имеют всего один дочерний узел. Например, если последовательно вставлять узлы с ключами/значениями, которые всегда больше предыдущих, в итоге получится нечто, похожее на связный список. Однако мы можем перестроить узлы в дереве так, что его высота уменьшится. Эта процедура вызывается балансировкой дерева . Идеально сбалансированное дерево имеет минимальную высоту (рис. 4.8).

Рис 48Одно и то же двоичное дерево поиска с разной балансировкой - фото 173

Рис. 4.8.Одно и то же двоичное дерево поиска с разной балансировкой: сбалансированное плохо, средне и идеально

Большинство операций с деревом требует обхода узлов по ссылкам, пока не будет найден конкретный узел. Чем больше высота дерева, тем длиннее средний путь между узлами и тем чаще приходится обращаться к памяти. Поэтому важно уменьшать высоту деревьев. Идеально сбалансированное двоичное дерево поиска можно создать из сортированного списка узлов следующим образом:

function build_balanced(nodes)

····if nodes is empty

········return NULL

····middle ← nodes.length/2

····left ← nodes.slice(0, middle — 1)

····right ← nodes.slice(middle + 1, nodes.length)

····balanced ← BinaryTree.new(root=nodes[middle])

····balanced.left ← build_balanced(left)

····balanced.right ← build_balanced(right)

····return balanced

Рассмотрим двоичное дерево поиска с n узлами и с максимально возможной высотой n . В этом случае оно похоже на связный список. Минимальная высота идеально сбалансированного дерева равняется log 2 n . Сложность поиска элемента в дереве пропорциональна его высоте. В худшем случае, чтобы найти элемент, придется опускаться до самого нижнего уровня листьев. Поиск в сбалансированном дереве с n элементами, следовательно, имеет O (log n ). Вот почему эта структура данных часто выбирается для реализации множеств (где предполагается проверка присутствия элементов) и словарей (где нужно искать пары «ключ — значение»).

Однако балансировка дерева — дорогостоящая операция, поскольку требует сортировки всех узлов. Если делать балансировку после каждой вставки или удаления, операции станут значительно медленнее. Обычно деревья подвергаются этой процедуре после нескольких вставок и удалений. Но балансировка от случая к случаю является разумной стратегией только в отношении редко изменяемых деревьев.

Для эффективной обработки двоичных деревьев, которые изменяются часто, были придуманы сбалансированные двоичные деревья (self-balancing binary tree) [48] Иногда их называют двоичными деревьями с автоматической балансировкой, или самоуравновешивающимися двоичными деревьями. — Примеч. пер. . Их процедуры вставки или удаления элементов гарантируют, что дерево остается сбалансированным. Красно-черное дерево (red-black tree) — это хорошо известный пример сбалансированного дерева, которое окрашивает узлы красным либо черным цветом в зависимости от стратегии балансировки [49] Стратегии автоматической балансировки выходят за рамки этой книги. Если вам любопытно, то в Интернете имеются видеоматериалы, которые показывают, как работают эти алгоритмы. . Красно-черные деревья часто используются для реализации словарей: словарь может подвергаться интенсивной правке, но конкретные ключи в нем по-прежнему будут находиться быстро вследствие балансировки.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»

Представляем Вашему вниманию похожие книги на «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]»

Обсуждение, отзывы о книге «Теоретический минимум по Computer Science [Все что нужно программисту и разработчику]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x