На заметку! После загрузки определений классов и других типов в память, их верификации и компиляции эти данные размещаются в распределенной памяти точно так же, как и любые другие данные, которые разработчики распределяют в своих приложениях. Рассмотрим пример. Предположим, вы создаете объект ArrayList:
System.Collection.ArrayList aList = new System.Collection.ArrayList();
При этом выполняются следующие операции:
1. Вышеприведенный код представляется в вашем приложении на промежуточном языке IL. Этот IL-код подвергается JIT-компиляции во время выполнения непосредственно перед тем, как выполняться в первый раз. Этот код помещается в распределенную память.
2. По окончании JIT-компиляции кода исполнительный механизм пытается определить, загружена ли информация о типе System.Collections.Array в память; если это не так, выполняется распределение памяти для этого типа, а также загрузка и связывание определения с классом ArrayList.
3. Во время выполнения приведенного выше фактического кода должен быть выполнен конструктор объекта ArrayList. Если соответствующий код еще не загружался и не подвергался JIT-компиляции, осуществляется распределение памяти для кода конструктора и JIT-компиляция этого кода. Выполняется загрузка кода, его верификация и JIT-компиляция, и память, распределенная для кода этого конструктора, связывается с конструктором класса ArrayList.
То же самое относится и к любому другому загружаемому типу или вызываемому методу; если необходимая работа по их загрузке не была до этого выполнена, они загружаются и компилируются по мере необходимости, и используемая для этого память связывается с типом.
Описанное распределение и отслеживание памяти играет очень важную роль. Как далее будет показано, к данным о коде и определениях классов, как и к любым другим объектам, могут применяться операции сборки мусора.
Управление памятью и сборка мусора
В процессе своего обычного выполнения ваш код периодически инициирует загрузку определений типов в память, компиляцию и выполнение кода, а также размещение объектов в памяти и их удаление из памяти. .NET Compact Framework проектировалась таким образом, чтобы обеспечить наилучший баланс между скоростью запуска, устойчивостью и непрерывностью выполнения кода даже в условиях существования жестких ограничений на объем доступной памяти. Для достижения этой цели загрузчик классов, механизм JIT-компиляции, а также модули распределения памяти и сборки мусора работают скоординированным образом.
Вероятнее всего, выполнение вашего кода будет сопровождаться периодическим созданием новых объектов и их последующим уничтожением после того, как необходимость в них исчезает. Эффективное удовлетворение запросов памяти для размещения объектов и ее освобождение достигаются в .NET Compact Framework за счет утилизации освобождаемой памяти путем так называемой "сборки мусора" (garbage collection). Операции по сборке мусора в той или иной форме используются в большинстве современных сред выполнения управляемого кода.
Сборка мусора в основном предназначена для решения двух задач: 1) восстановления памяти, которая больше не используется, и 2) уплотнения участков используемой памяти таким образом, чтобы для вновь распределяемых областей памяти были доступны как можно более крупные блоки. Тем самым решается одна из наиболее распространенных проблем, которая называется фрагментацией памяти. По своей сути эта проблема аналогична проблеме фрагментации дискового пространства. Если дисковое пространство периодически не реорганизовывать, то по прошествии некоторого времени оно дезорганизуется и разобьется на ряд чередующихся свободных и занятых участков небольшого размера; эти участки и являются фрагментами. Можно считать, что здесь мы имеем дело с проявлением действия закона увеличения энтропии применительно к дисковому пространству и памяти; для того, чтобы обратить энтропийные эффекты, необходимо затратить определенную работу. В результате фрагментации доступ к данным замедляется, поскольку в процессе чтения файлов головкам приходится многократно перемещаться вдоль поверхности диска. Фрагментация памяти оборачивается еще худшими бедами, так как для размещения объектов требуются достаточно большие непрерывные блоки памяти, способные уместить целиком все данные, относящиеся к объекту. После выполнения многочисленных операций выделения и освобождения порций памяти различного размера свободные области оказываются расположенными вразброс, а их размеры являются недостаточными, чтобы обеспечивалось наличие больших непрерывных участков памяти, необходимых для размещения объектов. Уплотнение всей используемой, но расположенной вразброс памяти позволяет создавать крупные блоки свободной памяти, которую можно эффективно использовать при распределении памяти для вновь создаваемых объектов.
Читать дальше