Есть хорошие новости – экосистема созданных для облака приложений Cloud Native буквально наводнена инструментами и решениями для перечисленных нами вызовов. Зачастую они бесплатны и с открытым кодом, и каждый день появляются новые решения. Самая распространенная проблема – управление сетевыми вызовами между микросервисами, отслеживание задержек, шифрование трафика – неплохо решается так называемыми сетками микросервисов (service mesh) – такими как Istio и Linkerd. Мы еще вспомним про них в дальнейших главах. Сбор распределенных журналов также отлично решается, например стеком ELK (Elastic, Logstash, Kibana), или Fluentd. Стандарт OpenTracing, метрики Prometheus, и отчеты Grafana уже встроены во многие библиотеки для создания микросервисов, и просто используя их, вы получите мощнейший центр наблюдения за своей системой.
Тем не менее, все это богатство надо изучить, выбрать нужное и подходящее вам, и настроить – эти издержки надо обязательно добавить в общую стоимость разработки реальной системы из микросервисов.
Микросервисы выглядят заманчиво, а вместе с контейнерами и оркестрацией Kubernetes и вовсе как очевидный выбор. Тем не менее, существует высокая цена эксплуатации системы, созданной на их основе, и экосистема для работы с ними требует инвестиций времени и ресурсов. В этой главе нет примеров – каждая система уникальна, и зависит прежде всего от области своего применения (domain). Архитектурные решения высокого уровня трудно описывать без сложного конкретного примера, поэтому мы рассмотрели все с высоты птичьего полета, но все концепции данной главы можно попробовать перенести на свой собственный проект.
Чтобы понять архитектуру и философию микросервисов чуть лучше, можно посоветовать следующие книги и ресурсы:
– Сэм Ньюмен (Sam Newman), «Создание микросервисов»
– Сэм Ньюмен (Sam Newman), «От монолита к микросервисам»
– www.cncf.io – главный сайт фонда Cloud Native Foundation, посмотрите раздел проектов (projects), многие посвящены работе микросервисных систем, в том числе OpenTracing и Prometheus.
– Некоторые видео с конференций KubeCon удачно описывают микросервисы для людей с разной степенью подготовки, найдите их канал на YouTube.
– Эрик Эванс (Eric Evans), «Предметно-ориентированное проектирование (DDD).»
– www.martinfowler.com – статьи про микросервисы и связанные концепции. Кое-что доступно и на русском языке.
Контейнеры (containers) – относительно новое слово и концепция, мгновенно захватившая мир разработки программного обеспечения за последние несколько лет. Это несомненный прорыв в попытках разработчиков и системных администраторов максимально использовать доступные им вычислительные ресурсы, при этом снизив сложность разработки и выпуска приложений.
Если кратко вспомнить историю, то серверные приложения, сервисы и базы данных изначально располагались на выделенных для них физических серверах, в подавляющем большинстве случаев под управлением одного из вариантов операционной системы Unix (или ее клона Linux). С взрывным ростом вычислительных мощностей использовать один мощнейший сервер для одного приложения стало и расточительно, и неэффективно – на одном сервере стали работать несколько приложений, внутренних сервисов или даже баз данных. При этом незамедлительно возникли серьезные трудности – различные версии приложений использовали разные версии основных библиотек Unix, использовали разные несовместимые между собой пакеты расширений или дополнительные библиотеки, соревновались за одинаковые номера портов, особенно если они были широко используемы (HTTP 80, HTTPS 443 и т.п.)
Разработчики работали над своим продуктом и тестировали его на отдельно выделенных серверах для тестирования ( среда разработки , development environment, или же дальше в среде тестирования , QA environment). На этих серверах сочетание приложений и сервисов было хаотичным и постоянно менялось в зависимости от этапа разработки, и как правило не совпадало с состоянием производственной (production) среды. Системным администраторам серверов пришлось особенно тяжело – совмещать созданные в изоляции приложения необходимо было развертывать и запускать в производственной среде (production), жонглируя при этом общим доступом к ресурсам, портам, настройкам и всему остальному. Надежность системы во многом зависела от качества настройки ее производственной среды.
Следующим решением, популярным и сейчас, стала виртуализация на уровне операционной системы. Основной идеей была работа независящих друг от друга операционных систем на одном физическом сервере. Обеспечивал разделение всех физических ресурсов, прежде всего процессорного времени, памяти и дисков с данными так называемый гипервизор (hypervisor). Делал он это прямо на аппаратном уровне (гипервизор первого типа) или же уже на уровне существующей базовой операционной системы (гипервизор второго уровня). Разделение на уровне операционной системы радикально улучшило и упростило настройку гетерогенных, разнородных систем в средах разработки и производства. Для работы отдельных приложений и баз данных на мощный сервер устанавливалась отдельная виртуальная операционная система, которую и стали называть виртуальной машиной (virtual machine), так как отличить ее «изнутри» от настоящей, работающей на аппаратном обеспечении ОС невозможно. На мощном сервере могут работать десятки виртуальных машин, имеющих соответственно в десятки раз меньше ресурсов, но при это совершенно независимые друг от друга. Приложения теперь свободны настраивать систему и ее библиотеки, зависимости и внутреннюю структуру как им вздумается, не задумываясь об ограничениях из-за присутствия других систем и сервисов. Виртуальные машины подсоединяются к общей сети, и могут иметь отдельный IP-адрес, не зависящий от адреса своего физического сервера.
Читать дальше