Сначала я хотел на этом примере показать, что в подобной ситуации робот был бы бесполезен: фильм показывает, что на симуляторах пилоту-человеку не хватает времени, чтобы среагировать на отказ двигателя. После того как в симуляторе учли время, необходимое на реакцию, компьютерные модели показали, что воздушное судно должно было разбиться, если бы пилоты попытались дотянуть до аэропорта и посадить самолет в штатном режиме. Следовательно, решение садиться на Гудзон было верным.
Но затем я увидел брешь в своем контраргументе: если бы на месте пилота был робот, в данной ситуации он за считаные наносекунды среагировал бы на ситуацию и безопасно посадил самолет в аэропорту Ла-Гуардия, а не на реку. Да, я предпочел бы самолет, который пилотирует робот.
Создание семантического мира
Искусственный интеллект, машинное обучение и глубокое обучение – основные элементы семантической паутины. Я впервые рассказал о ней добрый десяток лет назад и, пожалуй, в те времена неверно интерпретировал исходную идею Тима Бернерса-Ли. В его трактовке семантическая паутина – это сеть данных, которые могут обрабатываться машинами [20] Berners-Lee T., Fischetti М. Weaving the Web. New York: HarperCollins, 1999.
:
«Я мечтаю о Сети, [где компьютеры] смогут анализировать все данные в паутине – контент, ссылки, транзакции между людьми и компьютерами. «Семантическая паутина», способная это обеспечить, пока не появилась, но когда появится, повседневные механизмы торговли, документооборота и прочие рутинные процессы будут обслуживаться машинами, которые общаются с машинами. Наконец-то появятся разумные помощники, о которых люди мечтали веками».
Я не такой специалист в технических вопросах, как сэр Тим сотоварищи, и понимаю его идею таким образом: интеллектуальный интернет, который начинает индексировать сам себя таким образом, что все его узлы могут общаться друг с другом, достигать соглашений по разным вопросам и работать лучше.
В моей трактовке семантической паутины интернет будет управлять всеми моими устройствами, а эти устройства будут предугадывать все мои желания. Телевизор без просьб с моей стороны найдет развлекательную передачу, холодильник будет знать, какие продукты заказать, прежде чем они закончатся, автомобиль станет дозаправляться без моей команды. В такой версии семантической паутины машины действуют интеллектуально не только потому, что оснащены искусственным интеллектом и специально обучены, но и потому, что делятся накопленными знаниями с другими машинами, обучая всю сеть.
Искусственный интеллект, машинное обучение и глубокое обучение – подлинные основы семантической паутины. Отмечу, что между машинным и глубоким обучением есть разница. Глубокое обучение создано в качестве этапа продвижения от машинного обучения к полноценному искусственному интеллекту. MIT Review так определяет его:
«Программы для глубокого обучения призваны имитировать деятельность нейронов в коре головного мозга, составляющей около 80 % объема мозга, отвечающего за мышление. Программа в буквальном смысле учится распознавать закономерности в цифровых представлениях звуков, изображений и других данных» [21] Hof R. D. 10 Breakthrough Technologies 2013: Deep Learning. MIT Technology Review, 2013.
.
Иными словами, цель этих разработок – компьютер, не уступающий в интеллекте человеческому мозгу либо превосходящий его. Мечта о таком компьютере стала реальностью, когда в нашем распоряжении появились практически неограниченные вычислительные мощности; подобные машины становятся реальностью, ими занимаются такие интернет-гиганты, как Facebook, Amazon, Tencent, Baidu, Alibaba и Google. Их общими усилиями мы стремительно движемся к созданию искусственного интеллекта второго уровня – общего искусственного интеллекта.
Ранее в этой главе я уже упоминал о трех основных уровнях искусственного интеллекта, а именно:
• Ограниченный искусственный интеллект (ANI)специализируется на одной задаче. Таков, например, компьютер IBM Deep Blue, обыгравший Гарри Каспарова в шахматы. Он умеет делать только одно: играть в шахматы.
• Общий искусственный интеллект (AGI) – этап, на котором машина проходит тест Тьюринга и по уровню интеллекта сравнивается с человеком, умеет мыслить логически и абстрактно. Такая машина быстро учится, в том числе опытным путем.
• Сверхразумный искусственный интеллект (ASI) – машины становятся умнее всего человечества вместе взятого.
Читать дальше