На рис. 5.24 приведена обобщенная функциональная схема интерфейса для подключения аналогового датчика ко входу встроенного АЦП микроконтроллера. Датчик преобразует некоторую величину X в напряжение на выходе электронного преобразователя датчика. В последующих рассуждениях мы предположим, что электронный преобразователь имеет линейную передаточную характеристику. Если на входе присутствует некоторая физическая величина X 1, то на выходе электронного преобразователя формируется напряжение V 1min. При этом величина X 1соответствует минимальному значению, которое может преобразовать рассматриваемый датчик. Если на входе датчика присутствует величина X 2, то на выходе электронного преобразователя формируется напряжение V 2min. И X 2соответствует максимальному значению датчика. Все промежуточные значения величины X могут быть восстановлены по величине напряжения на выходе преобразователя V 1min< V < V 2min.
Рис. 5.24.Обобщенная функциональная схема интерфейса для подключения аналогового датчика ко входу встроенного АЦП МК
Для того чтобы значение напряжения на выходе датчика могло быть использовано в управляющей программе, его необходимо преобразовать в цифровой код при помощи модуля АЦП. Преобразование будет выполнено с максимально возможным разрешением, если V 1minбудет равно 0 В, а V 2min — 5,0 В. Поэтому между выходом датчика и входом АЦП следует установить дополнительный электронные усилитель со смещением уровня (рис. 5.24). Обозначим коэффициент усиления этого усилителя K, напряжение смещения — B. Для определения численных значений K и B составим два уравнения:
V 2max= V 2min × K + B
V 1max= V 1min × K + B,
где V 2maxи V 1maxнапряжения верхнего и нижнего уровня шкалы на выходе усилителя со смещением. Решив уравнения, можно получить численные значения коэффициента усиления и напряжения смещения, а затем реализовать необходимую схему на операционных усилителях.
Пример.Представьте себе, что Вам необходимо подключить барометр метеостанции к микроконтроллеру 68HC12 для автоматизированного учета показаний прибора. Диапазон допустимых напряжений сигнала АЦП микроконтроллера составляет 0…5,0 В. Минимальная величина показаний барометра равна 64 см ртутного столба, максимальная — 81 см. Барометр снабжен электронной схемой преобразования сигнала, которая формирует на выходе для показания 64 см напряжение –100 мВ, а для показания 81 см — напряжение +300 мВ. Передаточная характеристика этой электронной схемы преобразования линейная. Необходимо определить параметры дополнительного электронного преобразователя для сопряжения предоставленного барометра с МК семейства 68HC12.
В соответствие с ранее введенными обозначениями, можно записать: V 1min= –100 мВ, V 2min= 300 мВ, V 1max= 0 В, V 2max= 5,0 В. Подставим эти численные значения в уравнения для определения коэффициента усиления и напряжения смещения дополнительного электронного преобразователя сигнала:
5 В = 300 мВ × K + B
0 В = –100 мВ × K + B
Решив два уравнения совместно, получим, что коэффициент усиления K = 12,5, напряжение смещения B = 1,25 В. Проверьте полученный результат, подставив полученные значения в исходные уравнения. Составьте схему на операционном усилителе, реализующую необходимые преобразования.
Применяя рассмотренный метод преобразования входного сигнала, помните, что реальная схема сопряжения может потребовать установки дополнительных фильтров с целью подавления нежелательных гармоник сигнала датчика.
В главе 4 мы рассмотрели периферийные модули МК семейства 68HC12/HCS12, в том числе контроллеры последовательного обмена. Напомним, что МК 68HC12/HCS12 имеют в своем составе, как минимум, один контроллер асинхронного последовательного обмена SCI и один контроллер синхронного последовательного обмена SPI. Каждый из этих контроллеров формирует на выходе логические сигналы с напряжением около 5 В для логической 1 и около 0 В для логического 0. Однако если систему с МК необходимо соединить с другим устройством посредством интерфейса RS-232, то обмен с использованием логических уровней сигналов уже невозможен, и необходимо дополнительное согласование уровней.
Стандарт EIA-232-D устанавливает правила организации последовательного обмена данными для интерфейса RS-232 (EIA — Electronic Industries Alliance). Стандарт определяет число линий связи и их функциональное назначение, электрические характеристики сигналов в линиях, формат кадра обмена и механические соединители.
Читать дальше