8. Разработайте схему сопряжения МК с твердотельным реле (рис. 5.19), считая, что прямое падение напряжения на светодиоде равно 1,7 В, прямой ток светодиода равен 20 мА.
9. Опишите, как работает МДП-транзистор.
10. Используя дополнительные источники и Интернет (www.irf.com), составьте реферат о параметрах современных мощных МДП-транзисторов.
11. Некоторый датчик формирует на выходе в нижней точке шкалы измерения напряжение 30 мВ, в верхней точке шкалы — 500 мВ. Разработайте интерфейс сопряжения этого датчика с МК семейства 68HC12.
12. Повторите задание предыдущего вопроса, но при условии, что в нижней точке шкалы измерения напряжение равно 500 мВ, а в верхней точке шкалы выходное напряжение составляет –30 мВ.
Исследовательские
1. На рис. 5.5 подтягивающие резисторы подключены к напряжению питания VCC. Представьте, что схему изменили, и эти же резисторы подключили к общему выводу. Разработайте программу формирования кода нажатой клавиши для такой схемы подключения клавиатуры.
2. Разработайте алгоритм и блок-схему программы для аппаратного подключения переключателей и светодиодов рис. 5.11. Зеленый светодиод на выходе PC0 должен светиться, если нажата кнопка на входе PB0. На остальных выводах порта PC0 должны гореть красные светодиоды. Если нажата кнопка на входе PB1, должны светиться зеленые светодиоды на выходах PC0 и PC1. И так далее, для всех кнопок, заканчивая PB7, при нажатии которой должны загореться 8 зеленых светодиодов.
3. Измените текст программы параграфа 5.8.2, разрешив доступ по комбинации из шести правильных символов.
Глава 6
ДОБРО ПОЖАЛОВАТЬ В РЕАЛЬНЫЙ МИР!
ПОСЛЕ ИЗУЧЕНИЯ ГЛАВЫ ВЫ СМОЖЕТЕ:
• Определить реальные ограничения проекта, которые могут не позволить микроконтроллерной системе правильно работать.
• Изложить правила обращения с устройствами на базе КМОП и разработать рекомендации.
• Определить источники и внутренних и внешних помех для микроконтроллерной системы.
• Перечислить основные организации, ответственные за обеспечение директив и руководств по электромагнитной совместимости (ЭМС).
• Рассказать о методах проектирования, позволяющих минимизировать чувствительность к помехам.
• Применить программные методы защиты, чтобы минимизировать чувствительность к помехам.
• Описать методы обнаружения помех.
• Применить методы управления питанием, позволяющие снизить мощность, потребляемую микроконтроллерной системой.
• Понять изменения, определяемые выбором батарейного источника питания для микропроцессорной системы.
• Определить основные свойства супервизоров для управления микропроцессорами.
• Определить и реализовать меры энергосбережения.
Что можно сказать обо всей этой главе? После того, как вы рассмотрели цели главы, вы могли бы подумать, что глава представляет собой совокупность собранных с бору по сосенке разделов, которые неудобно размещать в любой другой главе. Мы согласны с тем, что в главе рассматривается много различных тем; однако, все они связаны общей нитью. Если при разработке реальных устройств проигнорировать любую из рассматриваемых здесь проблем, система вообще не сможет функционировать. Хуже все то, это поведение схемы при этом может носить случайный, непредсказуемый, или невоспроизводимый характер. В этой главе мы имеем дело с реальными проблемами разработки, которые необходимо решать. Мы приводим всесторонний список исходных материалов для дальнейших разделов, в которых читатель может разыскать дополнительную информацию.
6.1. Ужасные истории об ошибках проектирования
Мы начнем с нескольких «ужасных историй» о проектах, которые работали неправильно. Обратите особое внимание на специфические причины этих сбоев. После этого мы покажем Вам некоторые методы, которые позволяют превратить хороший проект, созданный на бумаге, в нормально работающее практическое устройство.
6.1.1. Случай квадратичного генератора
Прежде, чем обсудить первый случай, приведем некоторую основную информацию о восстановлении сигнала. Полезная методика создания аналогового сигнала заданной формы, состоит в том, чтобы разделить сигнал на ряд аналоговых данных. Аналоговые значения в отдельных точках преобразуются затем в двоичные коды от $00 до $FF. При этом минимальный сигнал в 0 В соответствует числу $00, а максимальный сигнал, например, в 5 В соответствует числу $FF. Аналоговые данные, расположенные между этими двумя экстремальными значениями преобразуются по линейному закону в 8-разрядный двоичный код. Не правда ли эта методика что-то вам напоминает? Конечно, это процесс аналого-цифрового преобразования (АЦП), который мы уже обсуждали в главе 4.
Читать дальше