Временная диаграмма работы с EDO-памятью в режиме страничного обмена приведена на рис. 7.3; этот режим иногда называют гиперстраничным режимом обмена НРМ (Hyper Page mode). Его отличие от стандартного заключается в подъеме импульса CAS#
до появления действительных данных на выходе микросхемы. Считывание выходных данных может производиться внешними схемами вплоть до спада следующего импульса CAS#
, что позволяет экономить время за счет сокращения длительности импульса CAS#
. Время цикла внутри страницы уменьшается, повышая производительность в страничном режиме на 40 %.
Рис. 7.3. Страничный режим считывания EDO DRAM (HPM)
Установка EDO DRAM вместо стандартной памяти в неприспособленные для этого системы может вызвать конфликты выходных буферов устройств, разделяющих с памятью общую шину данных. Скорее всего, этот конфликт возникнет с соседним банком памяти при чередовании банков. Для отключения выходных буферов EDO-памяти внутри страничного цикла обычно используют сигнал WE#
, не вызывающий записи во время неактивной фазы CAS#
(рис. 7.4, кривая а ). По окончании цикла буферы отключаются лишь по снятию сигнала RAS#
(рис. 7.4, кривая б ).
Рис. 7.4. Управление выходным буфером EDO DRAM
Из принципиального различия в работе выходных буферов следует, что в одном банке не стоит смешивать EDO и стандартные модули. EDO-модули поддерживаются не всеми чипсетами и системными платами (в большей мере это относится к системным платам для процессоров 486).
В памяти BEDO DRAM (Burst EDO) кроме регистра-защелки выходных данных, стробируемого теперь по фронту импульса CAS#
, содержится еще и внутренний счетчик адреса колонок для пакетного цикла. Это позволяет выставлять адрес колонки только в начале пакетного цикла (рис. 7.5), а во 2-й, 3-й и 4-й передачах импульсы CAS#
только запрашивают очередные данные. В результате удлинения конвейера выходные данные как бы отстают на один такт сигнала CAS#
, зато следующие данные появляются без тактов ожидания процессора, чем обеспечивается лучший цикл чтения. Задержка появления первых данных пакетного цикла окупается повышенной частотой приема последующих. BEDO-память применяется в модулях SIMM-72 и DIMM, но поддерживается далеко не всеми чипсетами.
Рис. 7.5. Страничный режим считывания BEDO DRAM
Вышеперечисленные типы памяти являются асинхронными по отношению к тактированию системной шины компьютера. Это означает, что все процессы инициируются только импульсами RAS#
и CAS#
, а завершаются через какой-то определенный (для данных микросхем) интервал. На время этих процессоров шина памяти оказывается занятой, причем в основном ожиданием данных.
7.1.2. Синхронная память — SDRAM и DDR SDRAM
Микросхемы синхронной динамической памяти SDRAM (Synchronous DRAM) представляет собой конвейеризированные устройства. По составу сигналов интерфейс SDRAM близок к обычной динамической памяти: кроме входов синхронизации здесь есть мультиплексированная шина адреса, линии RAS#
, CAS#
, WE#
(разрешение записи) и CS#
(выбор микросхемы) и линии данных (табл. 7.3). Все сигналы стробируются по положительному перепаду синхроимпульсов, комбинация управляющих сигналов в каждом такте кодирует определенную команду . С помощью этих команд организуется та же последовательность внутренних сигналов RAS
и CAS
, которая рассматривалась и для памяти FPM.
Таблица 7.3. Назначение сигналов в микросхемах SDRAM
Сигнал |
I/O |
Назначение |
CLK |
I |
Clock Input — синхронизация, действует по положительному перепаду |
CKE |
I |
Clock Enable — разрешение синхронизации (высоким уровнем). Низкий уровень переводит микросхему в режим Power Down, Suspend или Self Refresh |
CS# |
I |
Chip Select — разрешение декодирования команд (низким уровнем). При высоком уровне новые команды не декодируются, но выполнение начатых продолжается |
RAS#, CAS#, WE# |
I |
Row Address Strobe, Column Address Strobe, Write Enable — сигналы, определяющие операцию (код команды) |
BS0, BS1 или BA0, BA1 |
I |
Bank Selects или Bank Address — выбор банка, к которому адресуется команда |
А[0:12] |
I |
Address — мультиплексированная шина адреса. В циклах Bank Activate определяют адрес строки. В циклах Read/Write линии A[0:9] и А11 задают адрес столбца. Линия А10 в циклах Read/Write включает режим автопредзаряда (при А10=1), в цикле Precharge A10=1 задает предзаряд всех банков (независимо от BS0, BS1) |
DQx |
I/O |
Data Input/Output — двунаправленные линии данных |
DQM |
I |
Data Mask — маскирование данных. В цикле чтения высокий уровень переводит шину данных в высокоимпедансное состояние (действует через 2 такта). В цикле записи высокий уровень запрещает запись текущих данных, низкий — разрешает (действует без задержки) |
V SS, V DD |
– |
Общий провод и питание ядра |
V SSQ, V DDQ |
– |
Общий провод и питание выходных буферов. Изолированы от питания ядра для снижения помех |
Данные для первой передачи пакета записи устанавливаются вместе с командой WR
. Данные для остальных передач пакета передаются в следующих тактах. Первые данные пакета чтения появляются на шине через определенное количество тактов после команды. Это число, называемое CAS Latency (CL), определяется временем доступа T CACи тактовой частотой. Остальные данные пакета выдаются в последующих тактах. Временные диаграммы работы SDRAM приведены на рис. 7.6. Здесь показана команда записи WR
, за которой следует команда чтения RD
из той же страницы, предварительно открытой командой ACT
. Далее страница закрывается командой PRE
. Длина пакета 2, CL = 3.
Читать дальше