Глава 2
Делаем анализ данных
Когда я работал в компании Wikimart.ru, основатели этого проекта познакомили меня с Ди Джеем Патилом (DJ Patil). Ди Джей был тогда одним из ангелов-инвесторов проекта, он руководил аналитикой в LinkedIn, затем был ведущим аналитиком данных (Chief data scientist) Белого дома в Вашингтоне при администрации Барака Обамы, тогдашнего президента США. Встречался я с Ди Джеем несколько раз в Москве и в Кремниевой долине в Калифорнии. В Москву он приезжал для презентации своей мини-книги «Building Data Science Teams» («Построение команд аналитиков данных») [9], выпущенной издательством O’Reilly. В книге он обобщил опыт ведущих компаний Кремниевой долины. Очень рекомендую вам эту книгу, так как ее мысли мне близки, и их я проверил на практике. Вот как автор определяет организацию, управляемую данными:
«A data-driven organization acquires, processes, and leverages data in a timely fashion to create efficiencies, iterate on and develop new products, and navigate the competitive landscape».
«Организация, управляемая данными, своевременно получает, обрабатывает и использует данные для повышения эффективности, итераций и разработки новых продуктов, а также навигации в конкурентной среде».
Далее Ди Джей указывает на принцип «Если ты не можешь измерить, ты не можешь это исправить» («if you can’t measure it, you can’t fix it»), который объединяет самые сильные организации, эффективно использующие свои данные. Вот рекомендации Патила, которые следуют из этого принципа:
• Собирайте все данные, какие только возможно. Вне зависимости от того, строите ли вы просто отчетную систему или продукт.
• Продумывайте заранее и делайте вовремя измерение метрик проектов.
• Позвольте как можно большему количеству сотрудников знакомиться с данными. Множество глаз поможет быстрее выявить очевидную проблему.
• Стимулируйте интерес сотрудников задавать вопросы относительно данных и искать на них ответы.
Эти мысли я еще озвучу в главе про данные. А теперь самое время поговорить о том, что мы получаем на выходе анализа данных.
Здесь и далее под артефактами я буду понимать осязаемый результат, физический или виртуальный объект.
Рис. 2.1.Артефакты аналитики
Их можно разделить на три вида (рис. 2.1):
• артефакты бизнес-анализа данных (business intelligence);
• артефакты машинного обучения (machine learning);
• артефакты инженерии данных (data engineering).
Поговорим о них подробнее.
Бизнес-анализ данных (Business Intelligence, BI) – термин уже устоявшийся. Вот какое определение дает Википедия:
«Business Intelligence – это обозначение компьютерных методов и инструментов для организаций, обеспечивающих перевод транзакционной деловой информации в человекочитаемую форму, пригодную для бизнес-анализа, а также средства для работы с такой обработанной информацией».
Под бизнес-анализом я подразумеваю объединение контекста бизнеса и данных, когда становится возможным бизнесу задавать вопросы к данным и искать ответы Первыми артефактами являются так называемые инсайты и гипотезы, вторыми – отчеты или дашборды, метрики и ключевые показатели (Key Performance Indicator). Поговорим подробнее об инсайтах и гипотезах.
Инсайт (insight) в переводе с английского – понимание причин. Именно за этим обращаются к аналитикам. В поиске инсайтов помогают аналитика и статистика:
• Цель аналитики заключается [10] в помощи формулирования гипотезы.
• Цель статистики [10] в том, чтобы эту гипотезу проверить и подтвердить.
Это требует пояснений. В бизнесе, да и в жизни тоже, мы ищем причину проблемы, задавая вопрос «почему?». Не зная причины, мы не можем принять решение. В игру вступает аналитика – мы формулируем список возможных причин: это и есть гипотезы. Чтобы это сделать, нужно задать несколько вопросов:
• Не происходило ли что-нибудь подобное раньше? Если да, то какие тому были причины? Тогда у нас будет самая первая и самая вероятная гипотеза.
• Обращаемся к бизнес-контексту: не происходило ли каких-либо неординарных событий? Часто как раз параллельные события влияют на возникновение проблемы. Еще плюс пара гипотез.
• Описательный анализ данных (exploratory data analysis): смотрим данные в аналитической системе (например, кубах OLAP), не видно ли каких-либо аномалий на глаз? Например, какие-либо распределения изменились во времени (типы клиентов, структура продаж и т. д.). Если что-то показалось подозрительным – дополняем список гипотез.
Читать дальше
Конец ознакомительного отрывка
Купить книгу