Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• Использование более сложных методов поиска аномалий или изменений, например, как описано здесь [11].

Наша цель – накидать как можно больше гипотез, не ограничивая фантазию, затем отсортировать их по списку в порядке убывания вероятности, чтобы найти верную гипотезу как можно быстрее. Или даже воспользоваться бритвой Оккама, выстроив гипотезы по возрастанию сложности проверки. Иначе можно столкнуться с аналитическим параличом: превратить задачу в научную работу, когда проверяются все гипотезы без исключения. Такого в реальной жизни не бывает, у нас всегда есть ограничения в ресурсах – как минимум во времени. Как только гипотезы готовы, приходит очередь статистики, с помощью методов которой они проверяются. Как это сделать – расскажу в главе про эксперименты в ML.

Когда я был директором по аналитике Retail Rocket (сервис рекомендаций для интернет-магазинов), мне и аналитикам часто приходилось заниматься расследованиями, ведь бизнес довольно большой – больше 1000 клиентов, и странности, с которыми приходится разбираться, случаются часто. Много приходится работать с так называемыми А/Б-тестами: это тесты, где аудитория сайта делится на две части случайным образом – первой части пользователей показывается одна версия сайта, второй – другая. Такие тесты обычно используют, чтобы оценить влияние изменений на бизнес-метрики сайта, когда первая версия – это старая версия или контрольная группа, а вторая – новая версия. Если это интернет-магазин – это, скорее всего, будут продажи. Далее к результатам теста применяются статистические критерии, которые подскажут достоверность изменений.

Такие тесты хорошо выявляют проблемы: например, версия сайта с обновленными рекомендациями Retail Rocket проиграла старой версии рекомендаций. Как только это становится известным, начинается расследование. Проверка начинается с интеграции, и это первая гипотеза: правильно ли передаются нам данные от интернет-магазина. Обычно на этом этапе решается 60–70 % проблем. Далее мы пытаемся найти отличие этого магазина от остальных в такой же тематике, например магазины одежды. Это вторая гипотеза. Третья гипотеза – возможно, мы изменили дизайн сайта таким образом, что полезная информация опустилась ниже на странице сайта. Четвертая гипотеза – тест мог отрицательно повлиять на определенные категории товаров. Собрав набор таких гипотез, мы начинаем их проверять примерно в такой последовательности, как я описал. Довольно часто мы находим причину проблем, но иногда это не удается, его величество случай играет с нами в кошки-мышки, и эту мышку очень сложно найти.

Однажды клиент – магазин «Дочки-Cыночки» – тестировал наш сервис и сервис одного из наших российских конкурентов, чтобы выбрать лучший, и это превратилось в настоящий детектив [12]. Чтобы точно не проиграть в тесте, конкурент перемещал некоторое число пользователей, которые были близки к покупке, (например, добавили товар в корзину) из конкурентных (наших) сегментов в свой – причем делалось это не на постоянной основе, а в отдельные дни и часы. Основной метрикой сравнения была конверсия: процент пользователей, совершивших покупку. Ясно, что в той «мошеннической схеме» такой процент будет выше там, куда перетянули пользователей. Здесь компания Retail Rocket пошла на принцип! Мы стали копать. Через два месяца были обнаружены и опубликованы [12] факты подтасовки результатов. В итоге прошел ряд судебных процессов, и справедливость восторжествовала.

Отчеты, дашборды и метрики

Понятие самого отчета очень широкое, здесь я подразумеваю под ним табличное или иное графическое представление данных. Отчеты могут быть разными:

• Просто таблица с «сырыми» данными или так называемые «выгрузки», например, таблица с заказами клиентов.

• Отчет с «агрегированными» данными. Под агрегацией я подразумеваю суммы, количество и иные статистики. Например, таблица с именами клиентов и количеством заказов, который каждый из них совершил.

• Дашборды (dashboards) содержат ключевые показатели и метрики.

Первые два относительно просты и делаются через специальные системы, которые могут генерировать отчеты по запросу. Я стараюсь максимально оставить эту задачу на откуп пользователям. Почему? Потому, что тратить на это время высококвалифицированных сотрудников – значит стрелять из пушки по воробьям. Кстати, этим могут заняться стажеры-аналитики – отличный способ наработать опыт и понять бизнес-контекст. Как мотивировать пользователей стараться самостоятельно? Во-первых, они сэкономят время, которое обычно тратят на постановку задачи и ожидание результата. Во-вторых, получат возможность самим вносить правки и изменения – а значит творить. По моему опыту, обычно этим занимаются очень перспективные сотрудники, которые не бояться освоить новый инструмент, чтобы делать свою работу лучше. Остальным придется пройти через стандартный цикл планирования задач: а это время (дни, а иногда недели) и очень четкая формулировка технического задания. И кстати, все генеральные директора (Ozon.ru, Wikimart.ru, Ostrovok), с которыми я работал, пользовались OLAP-кубами со своих компьютеров. С их помощью они всегда могли ответить на простые вопросы, а если не получалось – обращались к аналитикам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x