Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• истинная одержимость покупателем (customer obsession);

• скепсис относительно моделей (a skeptical view of proxies);

• стремительное освоение внешних трендов (the eager adoption of external trends);

• стремительное принятие решений (the eager adoption of external trends).

Последний пункт мне кажется особенно важным в контексте этой книги. Для поддержания атмосферы компании Дня 1 требуется принимать быстрые и качественные решения. Мой шестилетний сын в таких случаях восклицает: «Но как?» Вот правила Безоса:

1. Никогда не использовать один-единственный процесс принятия решений (есть два типа решений, про которые я написал выше). Не дожидаться получения 90 % всей информации, нужной для принятия решения, – 70 % уже достаточно. Ошибаться не так страшно, если вы умеете быстро исправляться. А вот промедление, скорее всего, влетит вам в копеечку.

2. Не соглашайся, но позволяй. Когда руководителю предлагают идею талантливые и успешные сотрудники, а он не согласен с ней – ему стоит просто позволить им ее реализовать, а не тратить их усилия на то, чтобы убедить. Безос рассказал, как дали зеленый свет одному из сериалов Amazon Studios. Он считал, что запускать этот проект рискованно: Безосу эта история казалась сложной в производстве и не слишком интересной. Но команда с ним не соглашалась. Тогда он сказал – хорошо, давайте пробовать. Им не пришлось убеждать Безоса в своей правоте, и они сэкономили уйму времени. Сам он подумал так: эти ребята уже привезли домой одиннадцать премий «Эмми», шесть «Золотых Глобусов» и три «Оскара» – они знают, что делают, просто у нас разные мнения.

3. Быстро находите причины несогласия и эскалируйте их наверх вашим руководителям. Разные команды могут иметь разные взгляды на решение. Вместо того чтобы тратить время на изматывающих совещаниях в попытках договориться – лучше эскалировать проблему наверх.

Аналитический паралич

Поспешишь – людей насмешишь. Все самые страшные ошибки я совершил, когда торопился – например, когда 15 лет назад пришел в Ozon.ru, чтобы поднять аналитику с нуля и должен был каждую неделю делать огромную простыню метрик о деятельности всей компании без нормальных проверок. Из-за давления менеджмента и спешки в этом регулярном еженедельном отчете было множество ошибок, с последствиями которых мне еще долго пришлось разбираться.

Современный мир живет на бешеных скоростях, но расчет метрик нужно делать очень аккуратно, а значит, не быстро. Конечно, не стоит впадать в другую крайность – «аналитический паралич», когда на каждую цифру будет уходить очень много времени. Иногда попытки сделать правильный выбор приводят к тому, что я называю «аналитическим параличом» – когда уже пора принять решение, но не получается. Слишком высока неопределенность результата или рамки слишком жесткие. В аналитический паралич легко впасть, если пытаться принять решение чисто рационально, руководствуясь только логикой.

Яркий пример – книга «Проект Рози» Грэма Симсиона (кстати, одна из любимых книг Билла Гейтса и его жены). Молодой успешный ученый-генетик Дон ищет жену, но ни разу еще не продвинулся дальше первого свидания. Сочтя традиционный способ поиска второй половинки неэффективным, Дон решает применить научный подход. Его проект «Жена» начинается с подробнейшего 30-страничного вопросника, призванного отсеять всех неподходящих и выявить одну – идеальную. Понятно, что человека, который соответствовал бы такому списку требований, просто не существует. А потом он знакомится с девушкой, у которой нет ничего общего с его идеалом. Что из этого вышло – догадайтесь сами.

Второй пример – покупка машины. Когда я в последний раз делал это, то составил целую таблицу в Excel с техническими параметрами машин, вплоть до размера багажника в сантиметрах. Потом я целый год думал, ходил, смотрел, а в результате купил ту, которой и близко не было в моем списке, по велению сердца. Но на самом деле это было не веление сердца – просто за целый год поисков и анализа я понял, что в этом списке было по-настоящему важно для меня, а что нет.

Третий пример из моей профессиональной практики связан с гипотезами, точнее с тестами. Представьте себе, что вы вместо старого алгоритма рекомендаций разработали новый и хотите его протестировать. У вас есть 10 сайтов, где можно выполнить сравнение. В итоге вы получили: 4 выигрыша, 4 ничьи и 2 проигрыша. Стоит ли заменить старый алгоритм на новый? Все зависит от критериев решения, которые сформулировали перед тестом. Новый алгоритм должен победить на всех сайтах? Или вероятность выигрыша должна быть больше вероятности проигрыша? В первом случае очень высока вероятность того, что вы закопаетесь в бесконечных итерациях, «полируя» свой алгоритм до совершенства, особенно учитывая то, что тесты займут не одну неделю. Это типичная ситуация «аналитического паралича». Во втором – условие кажется легким. Хотя из практики скажу, что даже его выполнить бывает очень непросто.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x