Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бутстрэп [79] (оригинальная статья) работает за счет многократных выборок из данных, по которым затем считаются статистики. Алгоритм выглядит следующим образом [80]:

1. Необходимо задать количество выборок, которые мы сделаем из исходного датасета. Само число должно быть не меньше сотни. Больше – лучше.

2. При каждом повторении выборки (их всего будет) из исходного датасета случайно выбираются элементы с замещением, столько же, сколько было в исходном датасете (для сохранения вариации параметра [81]). В этой процедуре некоторые элементы исходного датасета будут выбраны несколько раз, некоторые – никогда.

3. Для каждой выборки вычисляется нужный нам параметр.

4. Теперь у нас есть k значений, которые можно использовать для вычисления доверительного интервала или статистического теста.

В А/Б-тестах мы работаем с двумя группами – контрольной и тестовой. По каждой группе нужно сделать свой бутстрэп. Считаем в каждой выборке и группе необходимую метрику. Для каждой выборки считаем разность метрик между группами. Таким образом мы получим k значений распределения разности в двух группах. Для вычисления значимости А/Б-теста нулевая гипотеза H 0 формулируется так: две выборки одинаковы, поэтому разность между ними равна нулю. Если уровень нашей ошибки первого рода = 0.05, тест двусторонний, то нам просто нужно вычислить перцентили (квантили) для отрезка [/2, 100 % – /2], то есть [2.5 %, 97.5 %]. Это легко сделать самостоятельно, если отсортировать наш ряд значений разницы метрик и определить значения перцентилей на концах. Если 0 будет находиться между двумя этими значениями, то нулевую гипотезу отвергнуть нельзя, если вне – отвергаем.

Вспомним наш пример с двумя резервуарами, у нас есть выборки по 1000 шаров из каждого. Напомню, что в задаче мы должны ответить на вопрос, есть ли разница в среднем диаметре шара между резервуарами. Для процедуры бутстрэпа делаем k = 300 выборок для обеих групп, сразу считаем среднее в каждой выборке и разность между ними. В итоге мы получим 300 чисел. Сортируем по убыванию и выбираем два числа – одно на 2.5-й перцентиле (2.5 % × 300 = 7.5 или на 7 позиция), второе на 97.5-м перcентиле (97.5 % × 300 = 292.5 или 293-я позиция). Если оба числа оказались или положительными, или отрицательными, значит, разница статистически значима.

Само слово «бутстрэп» произошло от выражения «To pull oneself over a fence by one’s bootstraps» (перебраться через ограду, потянув за ремешки на ботинках) – практически то же самое сделал барон Мюнхгаузен, когда вытянул сам себя за волосы из болота. Сейчас бутстрэпом называют такое «самовытягивание», когда мы получаем что-то бесплатное и полезное.

Плюсами бутстрэпа являются: независимость от распределения выборки, отсутствие параметров, кроме количества выборок, возможность легко подсчитать любую метрику. К минусам бутстрэпа относится очень высокая вычислительная требовательность. Создание тысяч выборок требует больших ресурсов. Третья альтернатива для А/Б-тестов – байесовская статистика.

Байесовская статистика

Впервые я познакомился с байесовским подходом для A/Б-тестов, когда прочитал статью Сергея Фельдмана на сайте нашего конкурента Richrelevance про этот тип тестов [82]. Одним из аргументов в пользу байесовских тестов для меня было сравнение двух формулировок итогов A/Б-тестов:

• мы отклоняем нулевую гипотезу, что A = Б, с p -значением 0.043;

• с 85 %-ной вероятностью А лучше Б на 5 %.

Первая формулировка принадлежит традиционной фишеровской статистике, вторая – байесовской. В статье [82] Сергей обращал внимание на следующие два недостатка p-значений для работы с гипотезами:

P -значение – сложная концепция, ее приходится каждый раз объяснять. Что касается меня, то я был хорошо знаком с ней еще в 2002 году. Периодически мне приходится напоминать себе о ней, и тогда я обращаюсь к литературе.

P -значение использует бинарный подход – мы или оставляем нулевую гипотезу или отвергаем ее, сравнивая p-значение со значением = 0.05.

Классическая математическая статистика (frequentist approach) относится к параметру как к фиксированной неизвестной константе. Байесовская статистика относится к параметру как к вероятностной величине [83]. Это чем-то похоже на разность в подходах классической и квантовой физики. Мне лично больше нравится вероятностный подход байесовской статистики, он выглядит нагляднее и естественнее, чем p -значение. Меня он так заинтересовал, что я долго искал хорошую и понятную литературу по этой теме. Очень полезной книгой оказалось «Введение в байесовскую статистику» [83] Уильяма Больстарда. Я очень ценю хорошие книги и могу назвать автора Учителем с большой буквы. Больстард очень хорошо выстроил систему вывода формул и доказательств. Я прочитал его книгу от корки до корки, решил почти все задачи в ней и написал первую версию программной библиотеки для A/Б-тестирования в Retail Rocket. Читая книгу Антонио Рохо о Рональде Фишере [76], я обнаружил интересный факт про байесовскую статистику – оказывается, она широко использовалась для оценки статистической значимости еще в дофишеровскую эпоху. Сторонники традиционного статистического подхода Фишера и сторонники байесовского подхода спорят до сих пор, какой метод лучше.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x