Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

До Фишера распределение в таких экспериментах производилось систематически, что могло искажать результаты. Интересно, что многие ученые не сразу приняли его метод, считая свой систематический подход верным. Кроме обычных A/Б-тестов, Фишер предложил схемы для более сложных многофакторных тестов. На деле даже с обычными тестами с двумя группами часто возникают проблемы, и до многофакторных тестов, когда проверяется сразу несколько изменений одновременно, редко кто доходит. Поэтому в этой книге я буду фокусироваться на самых простых тестах с двумя группами.

Итак, для проведения теста нам нужны метрика и рандомизация. Тесты проводят с контрольной группой. В медицине группу пациентов делят случайно на две – первой группе дают исследуемое лекарство, второй – лекарство-пустышку под названием плацебо. В маркетинге делается аналогично. Во времена почтовой торговли промоскидки отправляли одной группе клиентов, письма-пустышки (без скидок) – второй. При рассылке email-сообщений интернет-магазина контрольной группе обычно не отправляют ничего. Amazon.com, который был пионером тестирования в интернете, использовал А/Б-тесты (split test) для показа одной группе пользователей старой версии сайта, а второй – новой, и сравнивал их поведение, чтобы выбрать лучшую версию. Перед запуском полноценного боевого теста нужно проверить весь механизм работы, делается это с помощью симуляционного и реального тестов. Также можно использовать А/А-тесты – расскажу о них далее.

Что такое гипотеза в статистике

Для статистической проверки гипотез нам понадобится два важных понятия – генеральная совокупность и выборка. Генеральная совокупность (general population) – это все объекты, относительно которых нужно сделать выводы в исследовании. Выборка (sample) – это часть объектов генеральной совокупности, которые мы смогли пронаблюдать.

Пусть у нас есть огромный резервуар с шарами разного диаметра. В самом резервуаре сотни тысяч шаров. Средний диаметр неизвестен, и нам нужно его определить. Весь резервуар посчитать невозможно, слишком много работы нужно затратить. Для экономии средств и времени мы сделаем случайную выборку с замещением (возвращаем шар обратно после определения диаметра) определенного количества шаров. В этой задаче резервуар с шарами – это генеральная совокупность, средний диаметр шара – неизвестный параметр, который нам нужно определить, и мы сделаем это с помощью случайной выборки. Параметр в генеральной совокупности является истинным, параметр выборки является его оценкой.

Когда я слышу слово «распределение» – представляю себе гистограмму частот появления значений. В нашем примере это будет гистограмма с диаметрами шаров. Мы работаем с непрерывными числовыми значениями, вся шкала гистограммы разбивается на диапазоны, как правило, равной длины (0–10, 10.01–20…). На основе гистограммы сложно принимать решения, поэтому в гипотезах обычно оценивают какой-то отдельный параметр распределения, например среднее или медиану. Строим по ним гистограмму (рис. 10.1).

Такие гистограммы (распределения) очень сложно сравнить друг с другом, поэтому и используются числовые статистики распределений.

Генеральная совокупность имеет свое распределение шаров, выборка – свое. Чем больше выборочное распределение похоже на распределение генеральной совокупности – тем лучше. Случайность вытаскивания шаров очень важна для этого – ведь шары в резервуар могли насыпать сначала одного диаметра, потом другого. Тогда на поверхности могут оказаться самые большие шары, и если мы их будем брать преимущественно оттуда, то наше распределение шаров внутри выборки окажется смещенным в сторону большего диаметра, поэтому наши выводы могут оказаться неверными.

Рис 101Пример распределения Возвращать шары нужно чтобы работать с исходным - фото 52

Рис. 10.1.Пример распределения

Возвращать шары нужно, чтобы работать с исходным распределением генеральной совокупности, так как каждое вытягивание будет независимо от предыдущих. Теперь давайте применим интуицию – чем больше шаров мы вытянем, тем лучше распределение выборки будет похоже на распределение в резервуаре, и тем выше точность оценки параметра в выборке мы получим. А сколько нужно вытянуть шаров, чтобы получить приемлемую точность? На этот вопрос уже ответит статистика – об этом чуть позже, а сейчас усложним задачу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x