Тим Филлипс - Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе

Здесь есть возможность читать онлайн «Тим Филлипс - Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: personal_finance, foreign_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе
  • Автор:
  • Издательство:
    Манн, Иванов и Фербер
  • Жанр:
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-00100-572-8
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В последние годы популярность обрела тема «больших данных» (big data). Но многие люди не способны справиться даже с малым объемом данных – и, следовательно, не в состоянии принять взвешенное решение.
Из книги вы узнаете, как собирать, классифицировать, анализировать данные; использовать их в работе; распознавать подтасовки и верно интерпретировать информацию.
Эта книга нужна вам, если вы хотите научиться – или научить своих сотрудников – принимать решения на основе точной информации, а не сомнительных прогнозов.
На русском языке публикуется впервые.

Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте разберемся с каждым из приведенных примеров в обратном порядке. Последний пример сначала кажется полным абсурдом. Это одна из корреляций, созданных Тайлером Вигеном на его весьма забавном сайте Spurious Correlations («Ложные взаимосвязи»), где еще много подобных примеров сочетания вещей, которые, кажется, не имеют между собой ничего общего. Это результат доступности данных в современном обществе. Мы измеряем тысячи трендов, и вдруг оказывается, что у явлений, никак между собой не связанных, в точности совпадает динамика изменений. Этого можно избежать, если выдвинуть гипотезу, которую вы хотите протестировать, прежде чем изучать корреляции. Об этом речь в книге пойдет далее.

Ложные корреляции – это то, что получается, когда вы просто собираете большой массив данных и начинаете копаться в них в поисках взаимосвязей. Вы обнаружите несколько важных причинно-следственных отношений и целый ряд бессмысленных взаимосвязей. Компании постоянно отвлекаются на этот процесс. Конечно, в приведенном примере вы вряд ли поверили, что между этим двумя явлениями может быть причинно-следственная связь, но как быть в других ситуациях, когда наличие подобной связи кажется вполне возможным?

Статистика по сообщениям в твиттере и числу зрителей телевизионного шоу – более сложный случай. Между этими показателями может быть причинно-следственная связь, но при этом возможны три сценария.

• Эффект социального воздействия: когда пользователи пишут о телевизионном шоу в твиттер, это стимулирует других смотреть передачу.

• Сплетни о ТВ: когда зрители смотрят телешоу, им хочется написать об этом в твиттер.

• Высокое качество: у интересных телевизионных шоу большая зрительская аудитория, и они вызывают оживленное обсуждение.

Все это действительно важно, если вы работаете в телевизионной компании. Как вы используете социальные медиа? Велико искушение поверить в первый сценарий, инвестировать в то, чтобы побудить пользователей писать сообщения в твиттер, и ждать, что ваша аудитория вырастет. Многие компании примерно так же обосновывали выделение бюджета на продвижение в социальных сетях и обнаружили, что, когда они искусственно стимулировали количество сообщений в социальных сетях, ничего не происходило. Может быть, дело в том, что причинно-следственная связь здесь обратная: люди пишут сообщения о том, что они делают. В этом случае социальные медиа по-прежнему остаются полезным инструментом, но только для неформального аудита того, что собираются делать ваши потребители.

Третий сценарий также выглядит вполне достоверным. Он означает, что оптимальный способ потратить деньги – это вложить их не в социальные медиа, а в создание более качественного сценария и приглашение хороших актеров.

Между этими тремя сценариями может существовать взаимосвязь: А становится причиной В, В – причиной А или С (неизмеряемый показатель) становится причиной как А, так и В. Определением этих взаимосвязей занимается наука эконометрика. При наличии достаточного массива данных можно проверить две вещи: заметен ли эффект, когда А происходит до В, но не наоборот, когда В происходит до А (тогда можно предположить, что А становится причиной В); а также при прочих равных условиях (например, качестве) по-прежнему ли А вызывает В?

На основании доказательств, собранных на протяжении определенного периода и путем многочисленных наблюдений, можно с определенной долей уверенности утверждать наличие взаимосвязи между показателем индекса массы тела и вероятностью инфаркта. Мы можем быть уверены, что инфаркт не повышает индекс массы тела, так что В не является причиной А. Кроме того, этот эффект по-прежнему присутствует, когда все остальные переменные (генетический набор, стресс на работе и тому подобные) остаются постоянными. И эта взаимосвязь проявляется с течением времени во многих местах.

У вас вряд ли хватит времени, денег или массива данных, чтобы установить причинно-следственные отношения между абсолютно всеми аспектами и показателями вашего бизнеса. Но есть два неформальных теста, которые вы можете провести.

• Проверка практикой: если кто-то говорит вам, что А становится причиной В, может ли этот человек привести убедительные доказательства, что так оно и есть? Если никто не может дать достаточно достоверного объяснения, скорее всего, есть еще какой-то фактор.

• Проверка на повторяемость: если, как вам кажется, вы обнаружили закономерность, обратите внимание, повторится ли она в следующем месяце или в другом вашем офисе или с другими клиентами.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»

Представляем Вашему вниманию похожие книги на «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»

Обсуждение, отзывы о книге «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x