Покажет ли этот инструмент через неделю такие же результаты, как для сегодняшних 100 изделий? Что, если мы заменим операторов? Этот вопрос появляется в главе 8 о контроле и вновь возникает в главе 15 в связи с затратами на инспекцию. Читатель может получить совет из книги Гарри Кью и великолепной книги Western Electric Company (части B, стр. 84ff), обе ссылки приведены в конце данной главы. Стандарт 177 A. S. T M., относящийся к точности и систематическим ошибкам измерений, также будет полезен читателям (American Society for Testing and Materials – Американское общество по испытаниям и материалам).
Другая важная проблема использования инструментов – создать условия для хорошей работы. Пример (предоставленный моим другом д-ром Ллойдом Нельсоном) – образец жидкости, транспортируемый в лабораторию для измерения вязкости. По дороге он «стареет». Если бы измерительный инструмент можно было разместить там, где находится источник жидкости, результаты лучше бы характеризовали анализируемый материал.
Ложные сигналы измерительных инструментов. Неуправляемый измерительный прибор может дать сигнал о наличии особой причины, когда ее нет, или, наоборот, не обнаружить особую причину, когда она действительно существует. Недостаточно точный прибор даст ложный сигнал независимо от того, находится он в управляемом состоянии или нет. Теперь вы понимаете, насколько важно уделять внимание точности и статистической управляемости приборов. (Предложено Уильямом Шеркенбахом, Ford Motor Company.)
Оператор делал только одно измерение расстояния между двумя вспышками. Я попросил его сделать восемь замеров. Он согласился. Размах между восемью значениями оказался в четыре раза больше поля допуска. (Пример Джеффри Люфтига.)
Прежде чем делать выводы (относительно причины данного бедствия), я решил ознакомиться получше с системой измерений. Менеджер заверил меня, что измерения точны, ведь он сам их делал.
Контрольные границы – это не границы допуска. Контрольные границы, как только мы действительно достигли состояния статистической управляемости, характеризуют данный процесс и дают прогноз на завтра. Контрольная карта – это голос нашего процесса [84].
Распределение характеристики качества, находящейся в статистически управляемом состоянии, стабильно и предсказуемо, день за днем, неделя за неделей. Выход и затраты также предсказуемы. Теперь можно задуматься о системе канбан или о поставках по принципу «точно вовремя».
Более того, как указал Уильям Конвей, инженеры и технологи становятся изобретательнее, активнее творчески, проявляют больше инициативы в отношении совершенствования процесса, как только видят, что он находится в статистически управляемом состоянии. Они чувствуют, что дальнейшее совершенствование – это их задача (см. главу 1).
Без статистических методов попытки улучшить процесс – это действия наугад, что обычно только ухудшает ситуацию.
Вопрос на семинаре . Пожалуйста, уточните разницу между соответствием допускам и статистическим управлением процессом. Мой менеджмент считает, что соответствия допускам достаточно.
Ответ . Целью производства должно быть не только достижение состояния статистической управляемости, но и уменьшение вариаций. По мере того как уменьшаются вариации, затраты снижаются. Соответствия допускам недостаточно.
Более того, не существует способа узнать, сохранится ли соответствие допускам, если процесс не находится в состоянии статистической управляемости. До тех пор пока особые причины не определены и не исключены (по крайней мере, те, что появлялись до сих пор), никто не сможет предсказать, что произведет процесс в следующий час. Зависимость от инспекции (единственная альтернатива) опасна и дорогостояща. Ваш процесс может хорошо работать с утра и произвести изделия за границами поля допуска после полудня.
Как оценить потери, вызванные допущениями, которые сделали ваши менеджеры? Но откуда они могли знать о последствиях?
Рассчитанные допуски – это не границы, определяющие, как действовать. На деле крупные потери возникают тогда, когда процесс постоянно регулируется то одним, то другим образом с целью соответствия допускам. (См. разделы «Вера в то, что надо только попасть в допуск» и «Заблуждение теории "нуль дефектов" », глава 3.)
Любопытно, что процесс может находиться в статистически управляемом состоянии, производя 10 % дефектных изделий или даже 100 %.
Контрольные пределы не устанавливают вероятностей. Вычисления, показывающие, где должны располагаться контрольные пределы на карте, основаны на теории вероятностей. Тем не менее было бы неверным связывать любую определенную величину вероятности с тем, что статистический сигнал для обнаружения особой причины может быть ложным или что контрольная карта не сможет обнаружить и подать сигнал о наличии особой причины. Дело в том, что никакой процесс, за исключением искусственных демонстраций с использованием случайных чисел, не является стабильным, воспроизводимым.
Читать дальше
Конец ознакомительного отрывка
Купить книгу