Хоть Львов и был замечательным центром математики, многие профессора как из университета, так и из института находились в чрезвычайно стесненных обстоятельствах, получая очень маленькие жалования. Чтобы увеличить свой мизерный заработок от работы ассистентом или лектором, люди, такие как Шаудер, вынуждены были преподавать в средней школе. (Шаудер был убит немцами в 1943 году.) Збигнев Ломницкий подрабатывал экспертом по теории вероятностей в Правительственном институте статистики и страхования. Но между тем, если бы меня попросили назвать какое-то одно свойство, характеризующее развитие этой школы — школы математиков Львовского университета и политехнического института — я сказал бы, что оно заключается в занятии самыми фундаментальными задачами математики. Я имею в виду следующее: если рассматривать математику в виде дерева, то львовская группа была склонна исследовать скорее его корни и ствол, чем ветви, веточки и листья. Опираясь на надежную теоретическую и аксиоматическую основу, мы исследовали сущность пространства в общетопологическом смысле, общий смысл непрерывности, общие множества точек в евклидовом пространстве, основные функции вещественных переменных, проводили общее исследование пространств функций, понятий длины, площади и объема, т. е. общего понятия меры, и также определений теории вероятностей.
Бросая ретроспективный взгляд, удивляешься тому, что в алгебре понятия не рассматривались в подобном общем направлении. Не менее удивительно и то, что до сегодняшнего дня таким образом не изучены фундаментальные положения физики, особенно теории пространства и времени.
Львов часто и оживленно взаимодействовал с другими математическими центрами, особенно с Варшавой. Из Варшавы время от времени приезжали Серпинский, Мазуркевич, Кнастер, Тарский. Во Львове они часто выступали с небольшой речью на собраниях Математического общества, проходивших по субботним вечерам. Серпинский особенно любил неформальную атмосферу Львова, походы в харчевни и таверны и веселые попойки с Банахом, Рузевичем и другими (Рузевич был убит немцами 4 июня 1941 года).
Как-то Мазуркевич провел во Львове семестр лекций. Точно так же, как Кнастер в топологии, Мазуркевич был мастером по отысканию контрпримеров в анализе — примеров, демонстрирующих ложность какого-либо предположения. Иногда его контрпримеры были очень сложными, но всегда остроумными и изящными.
Серпинский, который сам непрерывным потоком выдавал результаты то в абстрактной теории множеств, то в теоретической топологии, никогда не обделял вниманием новые задачи, даже самые незначительные, и серьезно обдумывал их. Часто из Варшавы приходили его готовые решения.
Бронислав Кнастер был высоким, лысым и очень худым, с блестящими черными глазами. Он и Куратовский опубликовали много совместно написанных работ. Будучи воистину математиком-любителем, он проявлял большую изобретательность при построении множеств точек и континуумов с патологическими свойствами. Во время Первой мировой войны он изучал в Париже медицину. Отличаясь необычайным остроумием, он обычно развлекал нас рассказами о международной группе студентов-полиглотов на том неописуемом языке, на котором они разговаривали. Как-то он процитировал фразу одного студента, подслушанную в ресторане: «Kolego, pozaluite mnia ein stückele von diesem faschierten poisson» — амальгаму польского, русского, идиш, немецкого и французского!
Борсук, который был скорее моим сверстником, приезжая из Варшавы, оставался на более длительное время. С самого начала мы стали сотрудничать. От него я узнал о чисто геометрических, более наглядных и почти «осязаемых» приемах и методах топологии. Наши результаты были изложены в нескольких научных статьях, которые мы посылали в польские и некоторые заграничные журналы. Фактически моя первая публикация появилась в Соединенных Штатах, когда я был во Львове. Это была наша совместная с Борсуком работа, опубликованная в «Bulletin of the American Mathematical Society». Вместе мы дали определение понятию «эпсилон гомеоморфизм» (один из видов приближенного гомеоморфизма) и описали поведение некоторых топологических инвариантов под действием этих более общих преобразований — непрерывных, но необязательно взаимно однозначных. В другой совместной работе, посвященной симметричным произведениям, вводилось понятие, видоизменяющее определение декартова произведения и приводящее к построению некоторых любопытных многообразий. Возможно, некоторые из них когда-нибудь найдут применение в физических теориях. Они соответствуют новой статистике (не в привычном классическом смысле, а скорее в духе статистики неразличимых частиц квантовой теории или же частиц, поведение которых подчиняется статистике Бозе — Эйнштейна или Ферми-Дирака). Я не могу позволить себе вдаваться на этих страницах в объяснения, однако упоминание об этой работе, возможно, все же заинтересует некоторых читателей.
Читать дальше