Куратовский и Штейнгауз, каждый по-своему, демонстрировали в математике изящество, строгость и незаурядный ум. Куратовский был истинным представителем варшавской школы, которая, начиная с 1920 года, процветала с потрясающим размахом. Он приехал во Львов в 1927 году, уже знаменитый благодаря своей работе в области классической теории множеств и аксиоматической общей топологии. Будучи редактором «Fundamenta Mathematicae», он стал организатором и руководителем многих исследований, которые освещались в этом известном журнале. Его стилю в математике было присуще нечто, что я определил бы как латинскую лаконичность. Его взвешенному выбору задач, при всем изобилии математических определений и интересов (сейчас еще более обескураживающем, чем в то время), было присуще свойство, которое сложно определить — что-то вроде здравого смысла в абстракциях.
Штейнгауз был одним из немногих польских профессоров еврейского происхождения. Он происходил из известной, вполне ассимилированной еврейской семьи. Его двоюродный брат, который был великим патриотом и сражался в рядах армии Пилсудского, был убит на Первой мировой войне.
Его понимание анализа и прочувствованный подход к задачам в области вещественных переменных, теории функций, ортогональных рядов подтверждали его глубокое знание исторического развития математики и ее понятий, непрерывно сменяющих друг друга. Вполне возможно, что Штейнгауз сам, не имей он такого интереса и понимания сугубо абстрактных разделов математики, направил бы какие-нибудь новые математические идеи в русло практического применения.
Он обладал талантом применять математические формулировки к вопросам, сходным по своей простоте с проблемами повседневной жизни. Он склонялся к выбору таких геометрических задач, которые можно было бы рассматривать с точки зрения комбинаторики, да и любых других, лишь бы они представляли видимый, осязаемый вызов математическому подходу.
Он обладал тонким чувством лингвистики, которое временами граничило с педантизмом, и настаивал на применении абсолютно правильного языка в отношении математики или областей науки, поддающихся математическому анализу.
Ауэрбах был невысокого роста, сутуловатый и ходил, как правило, с опущенной вниз головой. Несмелый с виду, он часто обнаруживал очень едкий юмор. Его знание классической математики было, возможно, глубже, чем у большинства других профессоров. Он, к примеру, прекрасно знал классическую алгебру.
С его подачи Мазур, я и еще несколько математиков начали систематическое исследование групп Ли и других теорий, которые выходили за пределы той математики, которую сейчас принято называть польской. Ауэрбах обладал большими познаниями и в геометрии. Я часто обсуждал с ним теорию выпуклых тел, которой Мазур и я посвятили несколько совместных работ.
В Римском кафе Ауэрбах и я играли в шахматы, и часто мой дебют (тогда я еще не знал о теориях шахматных дебютов и в игре полагался лишь на интуицию) сопровождался следующим маленьким ритуалом: я делал ход пешкой и он обыкновенно говорил: «Ah! Ruy Lopez». Я спрашивал его: «Что это значит?», а он мне отвечал: «Испанский слон».
Ауэрбах умер во время войны. Насколько я знаю, он и Штернбах приняли яд, когда немцы везли их на допрос, однако мне ничего не известно ни об обстоятельствах их ареста, ни об их жизни до и во время фашистской оккупации.
Мое сотрудничество со Шрейером началось, я полагаю, когда я учился на втором курсе университета. Из всех математиков университета и политехнического института только Шрейер был действительно моим сверстником, т. к. он был старше меня всего лишь на полгода или год, и был тогда еще студентом университета. Мы встречались в аудитории для семинаров на лекциях Штейнгауза и обсуждали задачи, которыми я занимался. Почти сразу у нас обнаружилось много общих интересов, и мы стали регулярно встречаться. Результатом нашего сотрудничества явилась целая серия совместно написанных работ.
Мы встречались почти каждый день, иногда в кафе, но чаще у меня дома. Сам он жил в Дрогобыче — небольшом городке, нефтяном центре к югу от Львова. Какие проблемы и методы мы только не обсуждали вместе! Работа наша, несмотря на влияние действовавших тогда во Львове методов, распространялась на новые области: группы топологических преобразований, группы перестановок, теорию абстрактных множеств, общую алгебру. Я считаю, что некоторые наши научные статьи входят в число самых первых работ, рассматривающих приложения к более широкому классу математических объектов современных методов теории множеств с использованием более алгебраического подхода. Еще мы начали работу над теорией группоидов, как называли ее мы, или теорией полугрупп, как называют ее сейчас. Сейчас некоторые результаты этой работы можно найти в соответствующей литературе, а некоторые, насколько мне известно, так и остались ненапечатанными.
Читать дальше