Станислав Улам - Приключения математика

Здесь есть возможность читать онлайн «Станислав Улам - Приключения математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Ижевск, Год выпуска: 2001, ISBN: 2001, Издательство: Научно-издательский центр «Регулярная и хаотическая динамика», Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Приключения математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Приключения математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.).
Для широкого круга читателей — от студентов до специалистов-математиков и историков науки.
S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.

Приключения математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Приключения математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я нередко задавался вопросом, почему математики не классифицировали специальную теорию относительности, не представили ее в виде различных типов «специальных относительностей» (я не имею ввиду уже существующую общую теорию относительности). Лично я уверен в существовании других «относительностей» в общих пространствах, хотя едва ли какие-нибудь попытки в этом отношении уже предпринимались математиками. Написано огромное количество работ по метрическим пространствам, обобщающим обыкновенную геометрию, в которых отсутствует измерение времени. Ведь если объединить пространство и время, то математикам нечего будет делать! Топологи продолжают хранить верность пространственноподобным пространствам, они не изучали идеи, обобщающие четырехмерное пространство-время. И это мне очень удивительно, как с позиций эпистемологии, так и психологии. (На ум приходит только одна работа, написанная ван Данцигом, в которой он философски размышляет о понятии временной топологии; он говорит, что оно могло бы описываться соленоидальной переменной. Мне эта идея нравится, но все же следует изучать пространства с временным параметром более интенсивно и с большим воображением.)

Всем известно, что специальная теория относительности постулирует и строится исключительно на том, что скорость света всегда неизменна, независимо от движения источника или наблюдателя. Из одного этого постулата следует все, включая знаменитую формулу E = mc 2. Выражаясь математическим языком, инвариантность конусов света приводит к группе преобразований Лоренца. Тогда математик мог бы, просто ради математического развлечения, принять в качестве постулата, что, скажем, частота остается постоянной или что инвариантен какой-нибудь другой класс простых физических отношений. Путем логических рассуждений можно было бы посмотреть, каковы были бы последствия такой картины «нереальной» вселенной.

Сегодняшняя математика совершенно отличается от математики девятнадцатого века, даже если принять, что 99 % математиков вообще не знают физики. В физике существует так много идей, рожденных от математического вдохновения — новые понятия, новые формулировки. Нет, я не веду речи об использовании математики в физике, как раз наоборот: я говорю о физике как стимуле для новых математических концепций.

В физике, в отличие от математики, можно судить обо всем, что изучается с примерно одинаковой мерой. Каждый физик может понимать суть почти всей этой науки. Сейчас в ней присутствует совсем немного фундаментальных проблем, среди которых особое место занимает природа элементарных частиц и природа физического пространства и времени.

В целом, в современном исследовании, проводимом в теоретической физике, наблюдаются лишь незначительные изменения того, что уже существует, незначительное совершенствование деталей и продолжение того, что уже было начато, несмотря на большой ум, изобретательность и техническую подкованность многих молодых ученых, чьи фундаментальные предложения, при всем при этом, все же склонны быть ортодоксальными. Вероятно, так было всегда, и действительно новые идеи появляются исключительно редко.

Иногда, чтобы в шутку уколоть своих молодых друзей-физиков, которые только и делают, что изучают какие-нибудь очень необычные частицы, я говорю им, что это не лучший способ обрести вдохновение в основах физики и схеме всего в пространстве-времени.

На мой взгляд первостепенным вопросом в физике (хотя он не является точным и общепринятым) является вопрос о существовании истинной бесконечности структур, все уменьшающихся и уменьшающихся в размерах. Ведь если это так, то математикам стоило бы поразмыслить над тем, изменяются ли пространство и время, даже в своей топологии, в сторону все большего и большего уменьшения своих областей. Физика обеспечила нас базовыми знаниями об атоме и поле. Если конечная реальность состоит из поля, то его точки — это истинно математические и неразличимые точки. Существует возможность того, что в реальности мы имеем необычную структуру, состоящую из бесконечного множества этапов, каждый из которых имеет свою, отличную от других, природу. Эта удивительная картина приобретает физический смысл и не выглядит уже как философская головоломка. Недавние эксперименты определенно свидетельствуют о повышающейся сложности структур. В отдельном нуклоне могут содержаться партоны, как их назвал Фейнман. Эти партоны могут быть гипотетическими кварками или другими структурами. Последние теоретические попытки больше не в состоянии объяснять экспериментальные модели простыми кварками, и следует ввести цветные кварки различных типов. Возможно, мы уже пришли к такому моменту, когда можно наиболее плодотворно изучать последовательность структур как уходящую в бесконечность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Приключения математика»

Представляем Вашему вниманию похожие книги на «Приключения математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Приключения математика»

Обсуждение, отзывы о книге «Приключения математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x