Выражение «критическая масса» как метафора, обозначающая, каким должен быть минимальный требуемый размер группы ученых для того, чтобы, работая совместно, они получили успешные результаты, вошло в обиход после шумихи, поднявшейся вокруг создания атомной бомбы в Лос-Аламосе. Если группа довольно большая, результаты буквально извергаются ею. Когда же достигается критическая масса, то благодаря взаимному стимулированию «размножение» результатов, как и нейтронов, становится неописуемо интенсивнее и быстрее. Когда масса не достигает критической, прогресс идет постепенно, медленно и линейно.
Другие разновидности рабочих привычек ученых теперь стали менее интересными. В образ жизни тех, кто живет в мире науки, отрешенном от остального мира, сейчас входит все больше научных собраний, все больше правительственной деятельности.
Такая простая, но вместе с тем важная вещь, как написание писем тоже претерпела заметные перемены. Занятие это принято считать искусством, и не только в литературе. Из-под пера математиков выходили бесчисленные тома писем. Они писали от руки очень длинные письма, передавая наряду с математическими размышлениями малейшие подробности интимного и личного характера. Теперь, когда существуют секретари, подобный обмен личными высказываниями более затруднителен, равно как и необходимость диктовать технический материал, поэтому ученые в общем и математики в частности пишут друг другу все меньше писем. Если порыться в моей папке с письмами от ученых, которых я знал — коллекция, пополняющаяся уже более сорока лет — то можно заметить постепенный, а после войны ускорившийся переход от длинных, личных, от руки написанных писем до все более официальных, сухих, отпечатанных записок. Последние годы только два человека писали мне от руки: Джордж Гамов и Поль Эрдеш.
Физик Чженьнин Янг, лауреат Нобелевской премии, рассказывает такую историю, иллюстрирующую современный аспект отношений физиков и математиков на интеллектуальном уровне.
Однажды вечером в город приехали несколько человек. Им нужно было постирать свою одежду, и они пошли по улицам города в надежде отыскать прачечную. Наконец, им попалось здание с вывеской на окне: «Прачечная». Один из людей спросил: «Вы не могли бы постирать нашу одежду?» Хозяин ответил ему: «Нет, здесь у нас не прачечная». «Как же?», — спрашивает посетитель, — «На вашем окне даже висит вывеска». «Именно вывески мы тут и делаем», — прозвучал ответ. Это в чем-то характерно для математиков. Они делают вывески, которые, как они надеются, подойдут на все случаи. Однако и физики сделали многое в математике.
В некоторых наиболее конкретных частях математики — скажем, в теории вероятностей — физики вроде Эйнштейна и Смолу-ховского открыли определенные новые области даже прежде математиков. Идеи теории информации, энтропии информации и ее роли в общем континууме исходили от физиков, таких как Лео Сциллард, и инженера Клода Шеннона, а вовсе не «чистых» математиков, которые могли и должны были сделать это намного раньше. Понятие энтропии, свойства распределения, первоначально было введено в термодинамику, а потом приложено к физическим объектам. Но Сциллард (в очень общем виде) и Шеннон смогли определить это понятие и для общих математических систем. Правда Норберт Винер также принимал участие в его зарождении, а также замечательные математики, как Андрей Колмогоров, впоследствии развили, обобщили и приложили это понятие к чисто математическим задачам.
Некоторые математики прошлого, например, Пуанкаре, обладали немалыми познаниями в физике. Гильберт, у которого, казалось, не было особого понимания физики, написал очень важные работы о методах и логике этой науки. Фон Нейман также знал очень многое из физики, но ему, я бы сказал, не было свойственно врожденное понимание и осознание пользы эксперимента. Его интересовали основы квантовой механики, покуда к ним можно было применять математику. А для физики аксиоматический подход к ее теориям имеет то же значение, что грамматика для языка. Математическая ясность для физики может и не быть концептуально решающей.
С другой стороны, чистая математика тоже служила источником появления многих инструментальных средств теоретической физики, а иногда и некоторых ранних ее идей. Общие неевклидовы геометрии, в которых Риман пророческим образом усмотрел будущую их важность для физики, предшествовали теории относительности, так же как квантовую теорию предупредили определение и изучение операторов в гильбертовом пространстве. А слово «спектр», к примеру, употреблялось математиками задолго до того, как кто-то мог даже мечтать об использовании спектрального представления операторов гильбертова пространства для объяснения реального спектра света, излучаемого атомами.
Читать дальше