Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]

Здесь есть возможность читать онлайн «Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1954, Издательство: Государственное Издательство Детской Литературы, Жанр: Детская образовательная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная арифметика [Загадки и диковинки в мире чисел]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная арифметика [Загадки и диковинки в мире чисел]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге автор предлагает удивительную игру с числами. Книга дает возможность получить много интересных и полезных сведений о математике.
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.

Занимательная арифметика [Загадки и диковинки в мире чисел] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная арифметика [Загадки и диковинки в мире чисел]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3 0, 3 13 2, 3 3.

Это значит, что мы обращаемся здесь к услугам троичной системы счисления. Гири — цифры этой троичной системы. Но как воспользоваться ею, когда требуемый вес получается в виде разности двух гирь? И как избегнуть необходимости обращаться к удвоению гирь (в троичной системе ведь, кроме ноля, употребляются две цифры: 1 и 2)?

Набор гирь с помощью которых можно взвесить любой груз от 1 до 40 кг То и - фото 22

Набор гирь, с помощью которых можно взвесить любой груз от 1 до 40 кг.

То и другое достигается введением "отрицательных" цифр. Дело сводится попросту к тому, что вместо цифры 2 употребляют 3 – 1, то-есть единицу высшего разряда, от которой отнимается одна единица низшего. Например, число 2 в нашей видоизмененной троичной системе обозначается не 2, а 11¯, где знак минус над цифрой единиц означает, что единица эта не прибавляется, а отнимается. Точно так же число 5 изобразится не 12, а 111¯ (то-есть 9–3 — 1 = 5).

Теперь ясно, что если любое число можно изобразить в троичной системе с помощью ноля (то-есть знака отсутствия числа) и одной только цифры, именно прибавляемой или отнимаемой единицы, то из чисел 1, 3, 9, 27 молено, складывая или вычитая их, составить все числа от 1 до 40. Мы как бы пишем все эти числа, употребляя гири вместо цифр. Случай сложения отвечает при взвешивании случаю, когда гири помещаются все на одну чашку, а случай вычитания — когда часть гирь кладется на чашку с товаром и, следовательно, вес ее отнимается от веса остальных гирь. Ноль соответствует отсутствию гири.

Как известно, система эта на практике не употребляется. Всюду в мире, где введена метрическая система мер, применяется набор в 1, 2, 2, 5 единиц, а не 1, 3, 9, 27, хотя первым можно отвешивать грузы только до 10 единиц, а вторым — до 40. Не применялся набор 1, 3, 9, 27 и тогда, когда метрическая система еще не была введена. В чем же причина отказа на практике от этого, казалось бы, совершенного разновеса?

Причина кроется в том, что идеальный разновес удобен лишь на бумаге, на деле же пользоваться им весьма хлопотливо. Если бы приходилось только отвешивать заданное число весовых единиц — например, отвесить 400 г масла или 2500 г сахару, — то системой гирь в 100, 300, 900, 2700 можно было бы на практике пользоваться (хотя и тут приходилось бы каждый раз долго подыскивать соответствующую комбинацию). Но когда приходится определять, сколько весит данный товар, то подобный разновес оказывается крайне неудобным: здесь нередко, ради прибавления к поставленным гирям одной единицы, пришлось бы производить полную замену прежней комбинации другой, новой. Отвешивание становится при таких условиях делом крайне медленным и притом утомительным.

Не всякий быстро сообразит, что, например, вес 19 кг получится, если на одну чашку поставить гири в 27 кг и 1 кг, а на другую 9 кг; вес 20 кг — если на одну чашку поставить гири в 27 кг и 3 кг, а на другую — 9 кг и 1 кг. При каждом отвешивании приходилось бы решать подобные головоломки. Разновес 1, 2, 2, 5 таких затруднений не доставляет.

ПРЕДСКАЗАТЬ СУММУ НЕНАПИСАННЫХ ЧИСЕЛ

Что можно сказать о человеке, который напишет сумму раньше, чем ему будут названы все слагаемые?

Это, конечно, фокус, и выполняется он в таком виде. Отгадчик предлагает вам написать какое-нибудь многозначное число по вашему выбору. Бросив взгляд на это первое слагаемое, отгадчик пишет на бумажке сумму всей будущей колонны слагаемых и передает вам на хранение. После этого он просит вас (или кого-нибудь из присутствующих) написать еще одно слагаемое— опять какое угодно. А сам затем быстро пишет третье слагаемое. Вы складываете все три написанных числа — и получается как раз тот результат, который заранее был написан отгадчиком на спрятанной у вас бумажке.

Если, например, вы написали в первый раз 83 267, то отгадчик пишет будущую сумму 183 266. Затем вы пишете, допустим, 27 935, а отгадчик приписывает третье слагаемое 72 064:

I… Вы: 83 267,

III… Вы: 27 935

IV… Отгадчик: 72 064

_________________

II… Сумма 183266

Получается в точности предсказанная сумма, хотя отгадчик не мог знать, каково будет второе слагаемое. Отгадчик может предсказать также сумму пяти или семи слагаемых, но тогда он сам пишет два или три из них. Никакой подмены бумажки с результатом здесь заподозрить вы не можете, так как она до последнего момента хранится в вашем собственном кармане. Очевидно, отгадчик пользуется каким-то неизвестным вам свойством чисел. Каким?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная арифметика [Загадки и диковинки в мире чисел]»

Представляем Вашему вниманию похожие книги на «Занимательная арифметика [Загадки и диковинки в мире чисел]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная арифметика [Загадки и диковинки в мире чисел]»

Обсуждение, отзывы о книге «Занимательная арифметика [Загадки и диковинки в мире чисел]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x