Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]

Здесь есть возможность читать онлайн «Яков Перельман - Занимательная арифметика [Загадки и диковинки в мире чисел]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1954, Издательство: Государственное Издательство Детской Литературы, Жанр: Детская образовательная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная арифметика [Загадки и диковинки в мире чисел]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная арифметика [Загадки и диковинки в мире чисел]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой книге автор предлагает удивительную игру с числами. Книга дает возможность получить много интересных и полезных сведений о математике.
Ещё, эти задачи помогут научиться мыслить используя логическое мышление. В книге приведены интересные рассказы о приёмах арифметики в различных эпохах. Весьма полезным в наше время для школьников и взрослых могут оказаться приёмы быстрого счета.

Занимательная арифметика [Загадки и диковинки в мире чисел] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная арифметика [Загадки и диковинки в мире чисел]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из первых 17 чисел этого рода только два наименьшие—1 и 11—простые, остальные — составные. Вот как разлагаются на простые множители первые десять из составных чисел этого начертания:

111 = 3 х 37

1111 = 11 х 101

11111 = 41 х 271

111111 = 3 х 7 х 11 х 13 х 37

1111111 = 239 х 4649

11111111 = 11 х 73 х 101 х 137

111111111 = 9 х 37 х 333 667

1111111111 = 11 х 41 х 271 х 9091

11111111111 = 21 649 х 513 289

111111111111 = 3 х 7 х 11 х 13 х 37 х 101 = 9901

Не все приведенные здесь числа удобно использовать для отгадывания; в некоторых случаях выполнение фокуса возложило бы на загадчика чересчур обременительную работу. Но числа из 3, из 4, из 5, из 6, из 8, из 9, из 12 единиц более или менее пригодны для этой цели. Образчики использования их для отгадывания будут даны в конце следующей главы.

ЧИСЛОВЫЕ ПИРАМИДЫ

В следующих витринах галереи нас поражают числовые достопримечательности совсем особого рода — некоторое подобие пирамид, составленных из чисел. Рассмотрим поближе первую из них:

1 х 9 + 2 = 11

12 х 9 + 3 = 111

123 х 9 + 4 = 1111

1234 х 9 + 5 = 11111

12345 х 9 + 6 = 111111

123456 х 9 + 7 = 1111111

1234567 х 9 + 8 = 11111111

12345678 х 9 + 9 = 111111111

Как объяснить эти своеобразные результаты умножения?

Чтобы постичь эту странную закономерность, возьмем для примера какой-нибудь из средних рядов нашей числовой пирамиды: 123456 х 9 + 7. Вместо умножения на 9 можно умножить на (10 — 1), то-есть приписать 0 и вычесть умножаемое:

Достаточно взглянуть на последнее вычитание, чтобы понять, почему тут получается результат, состоящий только из одних единиц.

Мы можем уяснить себе это, исходя и из других рассуждений. Чтобы число вида 12 345… превратилось в число вида 11 111…, нужно из второй его цифры вычесть 1, из третьей — 2, из четвертой — 3, из пятой — 4 и т. д. — иначе говоря, вычесть из него то же число вида 12 345…, вдесятеро уменьшенное и предварительно лишенное последней цифры. Теперь понятно, что для получения искомого результата нужно наше число умножить на 10, прибавить к нему следующую за последней цифру и вычесть из результата первоначальное число (а умножить на 10 и отнять множимое — значит умножить на 9).

Сходным образом объясняется образование и следующей числовой пирамиды, получающейся при умножении определенного ряда цифр на 8 и прибавлении последовательно возрастающих цифр:

1 х 8 + 1 = 9

12 х 8 + 2 = 98

123 х 8 + 3 = 987

1234 х 8 + 4 = 9876

12345 х 8 + 5 = 98765

123456 х 8 + 6 = 987654

1234567 х 8 + 7 = 9876543

12345678 х 8 + 8 = 98765432

123456789 х 8 + 9 = 987654321

Особенно интересна в пирамиде последняя строка, где в результате умножения на 8 и прибавления 9 происходит превращение натурального ряда цифр в таковой же ряд, но с обратным расположением. Объясним эту особенность.

Получение странных результатов уясняется из следующей строки:

1 Почему 12345 х 9 + 6 дает именно 111111, было показано при рассмотрении предыдущей числовой пирамиды.

то-есть 12345 х 8 + 5 = 111111 — 12346. Но, вычитая из числа 111111 число 12346, составленное из ряда возрастающих цифр, мы, как легко понять, должны получить ряд убывающих цифр: 98 765.

Вот наконец третья числовая пирамида, также требующая объяснения:

9 х 9 + 7 = 88

98 х 9 + 6 = 888

987 х 9 + 5 = 8888

9876 х 9 + 4 = 88888

98765 х 9 + 3 = 888888

987654 х 9 + 2 = 8888888

9876543 х 9 + 1 = 88888888

98765432 х 9 + 0 = 888888888

Эта пирамида является прямым следствием первых двух. Связь устанавливается очень легко. Из первой пирамиды мы знаем уже, что, например:

12345 х 9 + 6 = 111111.

Умножив обе части на 8, имеем:

(12345 х 8 х 9) + (6 х 8) = 888888

Но из второй пирамиды известно, что

12345 х 8 + 5 = 98765, или 12345 х 8 = 98760.

Значит:

888888 = (12 345 х 8 х 9) + (6 х 8) = (98 760 х 9) + 48 = (98760 х 9) + (5 х 9) + 3 = (98 760 + 5) х 9 + 3 = 98765 х 9 + 3.

Вы убеждаетесь, что все эти числовые пирамиды не так уж загадочны, как кажутся с первого взгляда.

ДЕВЯТЬ ОДИНАКОВЫХ ЦИФР

Конечная строка первой из только что (см. стр. 85) рассмотренных пирамид

12 345 678 х 9 + 9 = 111 111 111

представляет образчик целой группы интересных арифметических курьезов, собранной в нашем музее в следующую таблицу:

12345679 х 9 = 111111111

12345679 х 18 = 222222222

12345679 х 27 = 333333333

12345679 х 36 = 444444444

12345679 х 45 = 555555555

12345679 х 54 = 666666666

12345679 х 63 = 777777777

12345679 х 72 = 888888888

12345679 х 81 = 999999999

Откуда такая закономерность в результатах?

Примем во внимание, что

12345 678 х 9 + 9 = (12 345 678 + 1) х 9 = 12 345 679 х 9.

Поэтому

12345 679 х 9 = 111 111 111.

А отсюда прямо следует, что

12 345 679 х 9 х 2 = 222 222 222,

12 345 679 х 9 х 3 = 333 333 333,

12 345 679 х 9 х 4 = 444 444 444 и т. д.

ЦИФРОВАЯ ЛЕСТНИЦА

Любопытно, что получится, если число 111 111 111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно подозревать, что результат должен быть диковинный, но какой именно?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная арифметика [Загадки и диковинки в мире чисел]»

Представляем Вашему вниманию похожие книги на «Занимательная арифметика [Загадки и диковинки в мире чисел]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная арифметика [Загадки и диковинки в мире чисел]»

Обсуждение, отзывы о книге «Занимательная арифметика [Загадки и диковинки в мире чисел]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x