Это последовательность “999999”, находящаяся на 762м знаке от начала. Желающие могут поэкспериментировать дальше самостоятельно с помощью программы на языке Python:
from math import factorial
from decimal import *
def chudnovsky(n):
pi = Decimal(0)
k = 0
while k < n:
pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409 + 545140134*k)/(640320**(3*k)))
k += 1
print("Шаг: {} из {}".format(k, n))
pi = pi * Decimal(10005).sqrt()/4270934400
pi = pi**(-1)
return pi
# Требуемая точность (число знаков)
N = 1000
getcontext().prec = N
val = chudnovsky(N/14)
print(val)
Эта программа не оптимизирована, и работает довольно-таки медленно, но для ознакомления с сутью алгоритма этого вполне достаточно. Кстати, с помощью формулы Чудновского два инженера Александр Йи и Сингеру Кондо в 2010 году объявили о новом мировом рекорде вычисления Пи на персональном компьютере: 5 трлн знаков после запятой. Компьютеру с 12 ядрами, 97Гб памяти и 19 жесткими дисками потребовалось 60 дней для выполнения расчетов.
На этом мы закончим с числом Пи, хотя с ним конечно, связано куда больше интересных фактов. Например 3 марта (т.е. 03.14) отмечается международный “день числа Пи”, ну а другие факты читатели могут поискать самостоятельно.
4. Вычисление радиуса Земли
О том, что Земля круглая сегодня знает каждый школьник, и никого не удивить таким видом планеты из космоса.

Однако в историческом плане, увидеть планету свысока мы смогли совсем-совсем недавно. Как же мог греческий ученый Эратосфен измерить радиус Земли, в 240 году до нашей эры? Оказывается мог, используя 2 научных “инструмента” - транспортир и верблюда, ну и разумеется, математику.
Эратосфен жил в Александрии - крупнейшем городе того времени, центром науки и искусств древнего мира. В Александрии по преданию, находился маяк высотой 120 метров - даже сегодня такое сооружение не просто построить, а в то время маяк считался одним из 7 чудес света. Эратосфен же был не только ученым, но и хранителем Александрийской библиотеки, содержащей до 700000 книг.
Читая труды по географии, Эратосфен нашел интересный факт - в городе Сиене в день летнего солнцестояния Солнце стоит так высоко, что предметы в полдень не отбрасывают тени. Другой может и не обратил бы на это внимание, но Эратосфен не зря интересовался и математикой и астрономией. Он знал что в его городе Александрии тень в этот же день имеет другой угол. Эратосфен дождался солнцестояния, измерил угол солнечных лучей и получил величину 7,2 градуса.
Что это значит? Объяснение данному факту могло быть только одно - Земля круглая, и угол падения солнечных лучей в разных точках Земли в одно время различается.

Картинка с сайта physicsforme.com
Дальше, как говорится, дело техники. Зная примерное расстояние между Сиеном и Александрией (которое было известно из времени в пути каравана верблюдов) и угол, легко получить длину всей окружности. К чести Эратосфена, его результат отличается от сегодняшнего всего лишь на 1%. Так, задолго до эпохи авиации и воздухоплавания, человек впервые смог измерить радиус планеты, даже при этом не отрываясь от нее. Увидеть настоящую кривизну Земли сумели лишь пилоты стратостатов в начале 20 века, более чем через 2000 лет после описанного опыта.
Разумеется, повторить подобный эксперимент сегодня легко может любой школьник. Нужно лишь сделать простейший угломер из транспортира и отвеса, и с помощью знакомых в другом городе, сделать измерения высоты Солнца в двух точках в одно и то же время.
5. Простые числа
Каждый знает, что простые числа — такие числа, которые делятся только на единицу и самих себя. Но так ли они просты, как кажутся, и актуальны ли сегодня? Попробуем разобраться.
То, что существуют числа, которые не делятся ни на какое другое число, люди знали еще в древности. Последовательность простых чисел имеет следующий вид:
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 …
Доказательство того, что этих чисел бесконечно много, дал еще Евклид, живший в 300 г до н.э. Примерно в те же годы уже известный нам греческий математик Эратосфен, придумал довольно-таки простой алгоритм получения простых чисел, суть которого была в последовательном вычеркивании чисел из таблицы. Те оставшиеся числа, которые ни на что не делились, и были простыми. Алгоритм называется «решето Эратосфена» и за счет своей простоты (в нем нет операций умножения или деления, только сложение) используется в компьютерной технике до сих пор.
Читать дальше