§ 6 . Рассеяние па нерегулярностях решетки
Теперь мы хотим рассмотреть одиночный электрон в неидеальном кристалле. Наш первоначальный анализ привел к выводу, что у идеальных кристаллов и проводимость идеальна, что электроны могут скользить по кристаллу, как по вакууму, без трения. Одной из самых важных причин, способных прекратить вечное движение электрона, является несовершенство кристалла, какая-то нерегулярность в нем. Допустим, что где-то в кристалле не хватает одного атома, или предположим, что кто-то поставил на место, предназначенное для какого-то атома, совсем не тот атом, какой положено, так что в этом месте все совсем не так, как в прочих местах. Скажем, другая энергия Е 0 или другая амплитуда А. Как тогда можно будет описать все происходящее?
Для определенности вернемся к одномерному случаю и допустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия Е 0 , как у других атомов. Обозначим эту энергию Е 0+ F . Что же происходит? Для электрона, который достиг атома «нуль», есть какая-то вероятность того, что он рассеется назад. Если волновой пакет, мчась по кристаллу, достигает места, где все немного иначе, то часть его будет продолжать лететь вперед, а другая отскочит назад. Анализировать такой случай, пользуясь волновым пакетом, очень трудно, потому что все меняется во времени. С решениями в виде установившихся состояний работать много легче. Мы обратимся поэтому к стационарным состояниям; мы увидим, что их можно составить из непрерывных волн, состоящих из двух частей — пробегающей и отраженной. В случае трех измерений мы бы назвали отраженную часть рассеянной волной, потому что она разбегалась бы во все стороны.
Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n = 0 не похоже на остальные. Пятерка уравнений при n =-2,-1, 0, +1 и +2 выглядит так:

Конечно, будут и другие уравнения при | n |>2. Они будут выглядеть так же, как (11.6).
Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.
Уравнение (11.10) по-прежнему будет служить решением Для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в положительном направлении х. Волна, бегущая в отрицательном направлении х, тоже подошла бы в качестве решения. Мы бы написали

Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:

Это решение представляет комплексную волну с амплитудой а, бегущую в направлении +х, и волну с амплитудой b, бегущую в направлении - х.
Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят а n с n Ј - 1, решаются формулой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением
E = E 0 -2 Acoskb . (11.30)
Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда амплитуда b будет, вообще говоря, комплексным числом.
То же самое можно сказать и о решениях а n при n і 1 . Коэффициенты могут стать иными, так что следовало бы писать

Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравнениям для а n , кроме средней тройки в (11.28), с помощью следующих пробных решений:
Читать дальше