Записав r в виде q e N , где N — число электронов в кубическом сантиметре, мы получим

У такого металла, как свинец, на каждый кубический сантиметр приходится 3·10 22атомов, и если каждый атом снабдит нас одним электроном проводимости, то 1/l будет порядка 2·10 -5 см . Это дает вам порядок величины эффекта.
§ 7. Квантование потока
Уравнение Лондонов (19.21) было предложено, чтобы объяснить наблюдавшиеся при сверхпроводимости явления, включая эффект Мейсснера. Однако в последнее время прозвучали и более поразительные предсказания. Одно из предсказаний Лондонов было таким своеобразным, что никто даже не обратил на него особого внимания. Об этом я и расскажу. На сей раз возьмем сверхпроводящее кольцо, толщина которого по сравнению с 1/l велика, и посмотрим, что случится, если мы сперва наложим на кольцо магнитное поле, затем охладим кольцо до сверхпроводящего состояния, а потом уберем первоначальный источник поля В. Последовательность этих событий изображена на фиг. 19.4.

Фиг. 19,4. Кольцо в магнитном поле.
а — в нормальном, состоянии; б — в сверхпроводящем состоянии; в — после того, как внешнее поле убрали.
В нормальном состоянии (фиг. 19.4, а ) в теле кольца имеется магнитное поле. Когда кольцо становится сверхпроводящим, поле (как мы уже знаем) выталкивается из вещества кольца. Но тогда, как показано на фиг. 19.4, б , останется некоторый поток поля сквозь отверстие кольца. Если теперь убрать внешнее поле, то те линии поля, которые шли через отверстие, будут «заморожены» (фиг. 19.4, в ). Поток Ф через центр сойти на нет не может, потому что дФ / д t должно быть все время равно контурному интегралу от Евдоль кольца, а Евнутри сверхпроводника равно нулю. И вот, когда мы убираем внешнее поле, то по кольцу начинает течь сверхпроводящий ток, цель которого — сохранить поток через кольцо неизменным. (Это старая идея о вихревых токах, только с нулевым сопротивлением.) Но все эти токи будут течь только у самой поверхности (на глубине не более 1/l), что следует из такого же анализа, как и проделанный для сплошного куска. Эти токи в состоянии сделать так, чтобы магнитное поле не попадало внутрь кольца, но зато все время держалось вокруг него.
Но здесь имеется существенное различие, и наши уравнения предсказывают поразительный эффект. Рассуждение о том, что фаза q в сплошном куске должна быть постоянной, к кольцу неприменимо; в этом вам помогут убедиться следующие рассуждения.
Далеко в глубине тела кольца плотность тока Jравна нулю; значит, (19.18) означает, что

Теперь посмотрим, что получится, если мы возьмем контурный интеграл от А по кривой Г, которая проходит по самому центру поперечного сечения кольца, нигде не подходя близко к поверхности (фиг. 19.5).

Фиг. 19.5. Кривая Г внутри сверхпроводникового кольца.
Из (19.26)

Вы знаете, что контурный интеграл от Апо любой петле равен потоку В через
петлю

Стало быть, уравнение (19.27) превращается в

Криволинейный интеграл от одной точки до другой (скажем, от точки 1 до точки 2) от градиента равен разности значений функции в этих двух точках:

Если начать сближать точки 1 и 2, чтобы петля стала замкнутой, то на первый взгляд могло бы показаться, что q 1станет равно q 2, так что интеграл в (19.28) обратится в нуль. Так оно и было бы для замкнутых петель в односвязном куске сверхпроводника, но для кольцеобразного куска это не обязательно. Единственное физическое требование, которое мы вправе предъявить, это чтобы в каждой точке волновал функция могла принимать только одно значение. Что бы ни делала фаза q, когда вы движетесь по кольцу, но когда вы возвращаетесь к начальной точке, фаза q обязана обеспечить вам прежнее значение волновой функции
. Так будет, если q меняется на 2p n , где n — любое целое число. Итак, если мы делаем один полный оборот вокруг кольца, то левая часть (19.27) должна быть равна h ·2p n . Подставляя сюда (19.28), получаем
Читать дальше