Стало быть, для любых состояний j и c

Если бы этого не было, вероятности «не сохранились бы» и частицы «терялись бы».
Прежде чем идти дальше, соберем все три общих закона для амплитуд, т. е. (3.24) —(3.26):

В этих уравнениях i и j относятся ко всем базисным состояниям какого-то одного представления, тогда как j и c — это любое возможное состояние атома. Важно отметить, что закон II справедлив лишь тогда, когда суммирование проводится по всем базисным состояниям системы (в нашем случае по трем: + Т, 0 Т, - Т). Эти законы ничего не говорят о том, что следует избирать в качестве базиса. Мы начали с прибора Т, который является опытом Штерна — Герлаха с какой-то произвольной ориентацией, но и всякая другая ориентация, скажем W , тоже подошла бы. Вместо i и j нам пришлось бы ставить другую совокупность базисных состояний, но все законы остались бы правильными; какой-то единственной совокупности не существует. Успех в квантовой механике часто определяется тем, умеете ли вы использовать тот факт, помня, что расчет можно вести из-за этого разными путями.
§ 6. Механика квантовой механики
Мы покажем вам сейчас, почему полезны эти законы. Пусть у нас есть атом в заданном состоянии (под этим мы подразумеваем, что он как-то был приготовлен), и мы хотим знать, что с ним будет в таком-то опыте. Иными словами, мы начинаем с состояния j атома и хотим знать, каковы шансы, что он пройдет через прибор, который пропускает атомы только в состоянии c . Законы говорят, что мы можем полностью описать прибор тремя комплексными числами i > — амплитудами того, что каждое из базисных состояний окажется в состоянии c , и что мы, пустив атом в прибор, можем предсказать, что произойдет, если опишем состояние атома, задав три числа < i |j>,— амплитуды того что атом из своего первоначального состояния перейдет в любое из трех базисных состояний. Это очень и очень важная идея, Рассмотрим другую иллюстрацию. Подумаем о следующей задаче. Начинаем с прибора S , затем имеется какая-то сложная мешанина, которую мы обозначаем A , а дальше стоит прибор R :

Под А мы подразумеваем любое сложное расположение приборов Штерна — Герлаха — с перегородками и полуперегородками, под всевозможными углами, с необычными электрическими и магнитными полями,— словом, годится все, что вам придет в голову. (Очень приятно ставить мысленные эксперименты — тогда нас не тревожат никакие заботы, возникающие при реальном сооружении приборов!) Задача состоит в следующем: с какой амплитудой частица, входящая в область A в состоянии (+ S ), выйдет из него в состоянии (0 R ), так что сможет пройти через последний фильтр R ? Имеется стандартное обозначение для такой амплитуды:
<0 R | A | + S > .
Как обычно, это надо читать справа налево: < Конец | Через | Начало>.
Если случайно окажется, это А ничего не меняет, а просто является открытым каналом, тогда мы пишем
<0 R |1|+ S >=<0 R |+ S >; (3.29)
эти два символа равнозначны. В более общих задачах мы можем заменить (+ S ) общим начальным состоянием j, а (0 R ) — общим конечным состоянием c и захотеть узнать амплитуду
A |j>.
Полный анализ прибора А должен был бы дать нам амплитуду А |j> для каждой мыслимой пары состояний j и c — бесконечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А ? Это можно сделать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:

На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подсказывают нам, как проанализировать проблему. Имеется определенная совокупность амплитуд < i |+ S > того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состояние j пройдет через последний фильтр в виде состояния (0 R ). Для каждого допустимого пути существует амплитуда вида
Читать дальше