Feynmann - Feynmann 8

Здесь есть возможность читать онлайн «Feynmann - Feynmann 8» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 8: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 8»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 8 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 8», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Частица а , рас­сеявшись, оказалась в состоянии 1. Под состоянием мы подра­зумеваем данное направление и энергию или какие-нибудь другие заданные условия. Частица b рассеялась в состояние 2.Предположим, что состояния 1 и 2 почти одинаковы. (На са­мом же деле мы хотели бы получить амплитуду того, что две частицы рассеялись в одном и том же направлении или в одно и то же состояние, но лучше будет; если мы сперва подумаем над тем, что произойдет, если состояния будут почти одинако­выми, а затем выведем отсюда, что бывает при их полном сов­падении.)

Пусть у нас была бы только частица а; тогда у нее была бы определенная амплитуда рас­сеяния в направлении 1, скажем <1| а >. А частица b сама по себе обладала бы амплитудой <2| b > того, что приземление произойдет в направлении 2. Если частицы не тождественны, то амплитуда того, что в одно и то же время произойдут оба рассеяния, равна попросту произведению

<1|а><2| b >. Вероятность же такого события тогда равна

|a ><2| b > | 2что также равняется

|<1| а >| 2|<2| b >| 2. Чтобы сократить запись, мы иногда будем полагать

<1| а >= а 1, <2| b >= b 2.

Тогда вероятность двойного рассеяния есть

|a 1| 2|b 2| 2.

Могло бы также случиться, что частица b рассеялась в на­правлении 1, а частица а —в направлении 2. Амплитуда та­кого процесса была бы равна

<2| а ><1| b >, а вероятность такого события равна

|<2| а ><1| b >| 2=| a 2| 2| b 1| 2.

Представим себе теперь, что имеется пара крошечных счет­чиков, которые ловят рассеянные частицы. Вероятность Р 2того, что они засекут сразу обе частицы, равна просто

P 2=| a 1| 2| b 2| 2+|a2| 2| b 1| 2. (2.3)

Положим теперь, что направления 1 и 2 очень близки. Бу­дем считать, что а с изменением направления меняется плавно, тогда а 1 и а 2при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а 1 и а 2сравняются, и можно будет положить а 1= а 2и обозна­чить каждую из них просто а; точно так же мы положим и b 1= b 2= b . Тогда получим

Р 2 = 2 |а| 2 | b | 2. (2.4)

Теперь, однако, предположим, что а и b тождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в ко­тором b переходит в 2, а а — в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплиту­да того, что в каждом из счетчиков появится по частице, равна

<1| а ><2| b >+<2| а ><1| b >, (2.5)

и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды:

Р 2= | а 1 b 2+ a 2 b 1| 2=4| a | 2| b | 2(2.6)

Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состоя­ние, по сравнению с расчетом, проводимым в предположении, что частицы различны.

Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, кото­рый находится на каком-то расстоянии. Мы определим направ­ление 1, говоря, что оно смотрит в элемент поверхности dS 1счетчика. Направление же 2 смотрит в элемент поверхности dS 2 счетчика. (Считается, что счетчик представляет собой по­верхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксирован­ное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали ве­роятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1| а >= a 1определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а 1 и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS 1 равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 8»

Представляем Вашему вниманию похожие книги на «Feynmann 8» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 8»

Обсуждение, отзывы о книге «Feynmann 8» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x