Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz . Она называется плоскостью (100), так как обратные величины отрезков, отсекаемых этой плоскостью по осям у и z, равны нулю.

Фиг. 37.7. Способы обозначения кристаллических плоскостей.
Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квадратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и . z . Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).
Вернемся теперь к фиг. 37.6. На ней мы видим кривые намагничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь слабых, что в нашем масштабе их трудно изобразить, намагниченность чрезвычайно быстро возрастает до весьма больших значений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы передвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совершенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до насыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при больших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать большей намагниченности, она уже равна M нас— значит, спины всех электронов направлены вверх.
Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под углом 45° к оси х? Мы включаем небольшое поле, и намагниченность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достижения насыщения поле должно быть довольно большим, ибо вектор намагниченности нужно повернуть в сторону от направления легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с вертикальной осью должна будет давать значение намагниченности, составляющее 1/Ц2 от намагниченности насыщения. Оказывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/Ц2. Аналогично для направления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вертикальную ось на расстоянии, составляющем 1/Ц2 от значения, соответствующего насыщению.
На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.

Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.
Никель отличается от железа. Оказывается, что направлением легкого намагничивания у него будет направление [111]. Кобальт имеет гексагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикулярную к ним, так что здесь используется четыре числа. Направление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.
Читать дальше