Когда атом имеет два уровня, отличающихся по энергии на величину DU, это может вызвать переход с верхнего уровня на нижний с излучением кванта света
hw=DU, (35.7)
где w — частота.
То же самое может произойти и с атомами в магнитном поле. Но только разность энергий настолько мала, что частота ее соответствует не свету, а микроволнам или радиочастотам. Переход с нижнего энергетического уровня на верхний может также происходить с поглощением света или (в случае атомов в магнитном поле) микроволновой энергии. Итак, если у нас есть атом в магнитном поле, то, прикладывая дополнительное электромагнитное поле надлежащей частоты, мы можем вызвать переход из одного состояния в другое. Другими словами, если у нас есть атом в сильном магнитном поле и мы будем «щекотать» его слабым переменным электромагнитным полем, то имеется некоторая вероятность «выбить» его на другой уровень, когда частота поля близка к w, определяемой соотношением (35.7). Для атома в магнитном поле эта частота в точности равна частоте, названной нами w р и зависящей от магнитного поля, согласно формуле (35.4). Если атом «щекотать» с другой частотой, то вероятность перехода станет очень мала. Таким образом, вероятность перехода при частоте w р имеет резкий резонанс. Измеряя частоту этого резонанса в известном магнитном поле В, можно измерить величину g ( q /2 m ), а следовательно, и g-фактор, причем с огромной точностью.
Интересно, что к такому же заключению можно прийти и с классической точки зрения. В соответствии с классической картиной, когда мы помещаем гироскоп, обладающий магнитным моментом m, и моментом количества движения 3, во внешнее магнитное поле, гироскоп начнет прецессировать вокруг оси, параллельной этому полю (фиг. 35.3).

Фиг. 35.3. Классическая прецессия атома с магнитным моментом m и моментом количества движения J ,
Предположим, нас интересует, как можно изменить угол классического гироскопа по отношению к магнитному полю, т. е. по отношению к оси z? Магнитное поле создает момент силы относительно горизонтальной оси. На первый взгляд кажется, что такой момент силы старается выстроить магниты в направлении поля, но он вызывает только прецессию. Если же мы хотим изменить угол гироскопа по отношению к оси z, то должны приложить момент силы относительно оси z . Если мы приложим момент силы, действующий в том же направлении, что и прецессия, угол гироскопа изменится и это приведет к уменьшению компоненты Jв направлении оси z. Угол между направлением Jи осью z на фиг. 35.3 должен увеличиться. Если мы попытаемся воспрепятствовать прецессии, вектор Jбудет двигаться по направлению к вертикали.
Но каким образом к нашему прецессирующему атому можно приложить нужный момент силы? Ответ: с помощью слабого магнитного поля, направленного в сторону. На первый взгляд вам может показаться, что направление этого магнитного поля должно крутиться вместе с прецессией магнитного момента, так чтобы поле всегда было направлено к нему под прямым углом, как это показано на фиг. 35.4, а с помощью поля В'.

Фиг. 35.4. Угол прецессии атомного магнитика можно изменить двумя путями:
а — горизонтальным магнитным полем, направленным всегда под прямым углом к m ; б— осциллирующим полем.
Такое поле работает очень хорошо, однако нисколько не хуже действует и переменное горизонтальное поле. Если у нас есть горизонтальное поле В', которое всегда направлено по оси х (в положительную или отрицательную сторону) и которое осциллирует с частотой w p, тогда через каждые полпериода действующая на магнитный момент пара сил переворачивается, так что получается суммарный эффект, который почти столь же эффективен, как и вращающееся магнитное поле. С точки зрения классической физики мы бы ожидали при этом изменения компоненты магнитного момента вдоль оси z, если у нас есть очень слабое магнитное поле, осциллирующее с частотой, в точности равной w p. Разумеется, по классической физике m г должно изменяться непрерывно, но в квантовой механике z-компонента магнитного момента не может быть непрерывной. Она должна неожиданно «прыгать» от одного значения до другого. Я сравнивал следствия классической и квантовой механики, чтобы дать вам понятие о том, что может происходить классически, и как это связано с тем, что происходит на самом деле в квантовой механике. Обратите внимание, между прочим, что в обоих случаях ожидаемая резонансная частота одна и та же.
Читать дальше