Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь наши граничные условия [уравнения (33.26) — (33.31)] должны дать соотношения между компонентами Еи В в областях 1 и 2. В области 2 у нас есть только одна преломлен­ная волна, а вот в области 1 — их две. Какую же из них нам взять? Поля в области 1 будут, разумеется, суперпозицией полей падающей и отраженной волн. (Поскольку каждое удовлетворяет уравнениям Максвелла, то им удовлетворяет и сумма.) Поэтому, когда мы используем граничные условия, нужно помнить, что

E 1=E i+E r, E 2=E t

я аналогично для В.

Для поляризаций, которыми мы сейчас занимаемся, уравне­ния (33.26) и (33.28) не дают никакой новой информации, и только уравнение (33.27) поможет нам. Оно говорит, что на границе, т. е. при х = 0:

E i + E r = E t .

Таким образом, мы получаем уравнение

которое должно выполняться для любого t и любого у Возьмем сначала y0 Для - фото 134

которое должно выполняться для любого t и любого у. Возьмем сначала y=0. Для этого значения уравнение (33.38) превра­щается в

согласно которому два осциллирующих члена равны третьему Это может произойти - фото 135

согласно которому два осциллирующих члена равны третьему. Это может произойти, только когда частоты всех осцилляции одинаковы. (Невозможно, сложив три или какое-то другое число подобных членов с различными частотами, получить для любого момента времени в результате нуль.) Итак,

w"=w'=w, (33.39)

как это и было нам всегда известно, т. е. частоты преломленной и отраженной волн те же самые, что и падающей.

Если бы мы предположили это с самого начала, то несом­ненно избежали бы многих трудностей, но мне хотелось пока­зать вам, что тот же самый результат можно получить и из урав­нений. А вот когда перед вами будет стоять реальная задача, лучше всего пускать в оборот сразу все, что вы знаете. Это избавит вас от лишних хлопот.

По определению абсолютная величина k задается равенством k 2=n 2w 2/с 2, поэтому

А теперь обратимся к уравнению 3338 для t 0 Используя снова те же - фото 136

А теперь обратимся к уравнению (33.38) для t =0. Используя снова те же рассуждения, что и прежде, но на сей раз основы­ваясь на том, что уравнения должны быть справедливы при всех значениях у, мы получаем

k" y=k' y=k y. (33.41)

Из формулы (33.40) k' 2=k 2, так что

k' 2 x+k' 2 y=k 2 x+k 2 y. Комбинируя это с (33.41), находим

k' 2 x=k 2 x, или k ' x =+ k x . Знак плюс не имеет никакого смысла; он не дает нам никакой отраженной волны, а лишь другую падающую волну, и с самого начала мы говорили, что будем решать задачу с единственной падающей волной, так что

k ' x =- k x . (33.42)

Два соотношения (33.41) и (33.42) говорят нам, что угол отра­жения равен углу падения, как это и ожидалось (см. фиг. 33.3). Итак, в отраженной волне

Для преломленной волны мы уже получали Их можно решить и в результате - фото 137

Для преломленной волны мы уже получали

Их можно решить и в результате получить Предположим на мгновение что n - фото 138

Их можно решить и в результате получить

Предположим на мгновение что n 1 и n 2 вещественные числа т е что мнимая - фото 139

Предположим на мгновение, что n 1 и n 2— вещественные числа (т. е. что мнимая часть показателей очень мала). Тогда все k тоже будут вещественными и из фиг. 33.3 мы видим, что

k y/k =sinq i, k y/k"=sinq t. (33.46)

Но ввиду уравнения (33.44) мы получаем

n 2sinq t = n i sinq i ;, (33.47)

т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться

(33.45). [Конечно, мы могли бы определить углы q i. и q tиз

(33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами k xили k " x .. ]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x