Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.

Поляризация уже не параллельна направ­лению электрического поля. Нетрудно понять, отчего так про­исходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заря­ды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выде­лен. То, что индуцированная поляри­зация не направлена по электрическо­му полю, справедливо и в общем случае. Перед этим нам просто «посчастливи­лось» выбрать такие оси х и у, для которых поляризация Рбыла направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е 2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызван­ная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это ус­ложнение, величина поляризации Рдля любого поля Епо-преж­нему пропорциональна его величине.

Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Рс компонентами по всем трем осям, поэтому мы можем написать

Р x = a xx E x , Р у = a ух Е х , Р z = a zx Е x . (31.1)

Этим я хочу сказать лишь, что электрическое поле, направ­ленное по оси х, создает поляризацию не только в этом нап­равлении, оно приводит к трем компонентам поляризации Р х , Р y и P z , каждая из которых пропорциональна Е х . Коэффициен­ты пропорциональности мы назвали a хх , a ух и a zx(первый зна­чок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).

Аналогично, для поля, направленного по оси у, мы можем написать

Р х = a ху Е y , Р у = a уу Е у , Р z = a гу Е у , (31.2)

а для поля в z-направлении

P x= a xzE z, P y = a yz E z P z = a zz E z . (31,3)

Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Ес компонентами х и у, то x-компонента поляризации Рбудет суммой двух Р х , определенных уравнениями (31.1) и (31.2), ну а если Еимеет составляющие по всем трем направлениям х, у и z, то состав­ляющие поляризации Рдолжны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде

Диэлектрические свойства кристалла таким образом полностью описываются - фото 18

Диэлектрические свойства кристалла, таким образом, пол­ностью описываются девятью величинами ( a xx ,, a xy ,, a xz , a yz , ... ), которые можно записать в виде символа a ij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электри­ческое поле Еможно разложить на составляющие Е x , Е y и Е z . Зная их, можно воспользоваться коэффициентами a ij и найти Р х , Р y и P z , которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов a ij называется тензором — в данном примере тензором поляризуемости . Точно так же как три величины х , Е у , Е z ) «образуют вектор Е», и мы говорим, что девять величин ( a хх , a ху , ... ) «образуют тензор a ij».

§ 2. Преобразование компонент тензора

Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Е х ' , Е у ' , Е г ' тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты a ij оказываются различными. Однако вполне можно выяснить, как должны изме­няться а при надлежащем изменении компонент Еи Р, ибо, если мы описываем то же самое электрическое поле, но в но­вой системе координат, мы должны получить ту же самую по­ляризацию Р. Для любой новой системы координат P x 'будет линейной комбинацией Р х , Р y ' , и Р z ':

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x