Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Feynmann 6 - изображение 342

где b другая постоянная интегрирования. Итак, мы обна­ружили, что решение для электростатического потенциала в пустом пространстве имеет вид

Что-то здесь явно не так. Мы же знаем решение для электро­статического потенциала в области, где нет электрических за­рядов: потенциал всюду постоянен. Это соответствует первому слагаемому в решении. Но имеется еще и второй член, подска­зывающий нам, что в потенциал дает вклад нечто, меняющееся как 1/r. Мы знаем, однако, что подобный потенциал соответ­ствует точечному заряду в начале координат. Стало быть, хоть мы и думали, что нашли решение для потенциала в пустом про­странстве, наше решение фактически дает нам также поле то­чечного источника в начале координат. Вы замечаете сходство между тем, что сейчас произошло, и тем, что произошло тогда, когда мы искали сферически симметричное решение волнового уравнения? Если бы в начале координат действительно не было ни зарядов, ни токов, то не возникли бы и сферически расходя­щиеся волны. Сферические волны должны вызываться источни­ками в начале координат. В следующей главе мы исследуем связь между излучаемыми электромагнитными волнами и вызы­вающими их токами и напряжениями.

Глав а 21

РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА С ТОКАМИ И ЗАРЯДАМИ

§ 1. Свет и электро­магнитные волны

§ 2. Сферические вол­ны от точечного источника

§ 3. Общее решение уравнений Максвелла

§ 4. Поля колеблющегося диполя

§ 5. Потенциалы дви­жущегося заряда; общее реше­ние Льенара и

Вихерта

§ 6. Потенциалы заряда, движущегося с постоянной скоростью;

формула Лоренца

Повторить: гл. 28 (вып. 3) «Элект­ромагнитное излучение»; гл. 31 (вып. 3)

«Как возникает показатель преломления»; гл. 34 (вып. 3)

«Релятивистские явления в излучении»

§ 1. Свет и электромагнитные волны

В предыдущей главе мы видели, что среди решений уравнений Максвелла есть электро­магнитные волны. Свету, радио, рентгеновским лучам и т. д. отвечают электромагнитные волны отличающиеся только длиной волны. Мы уже подробно изучали различные явления, связан­ные со светом. В этой главе мы хотим связать оба вопроса и показать, что уравнения Мак­свелла действительно могли служить основой для изучения свойств света.

Наше изучение света мы начали с того, что выписали уравнение для электрического поля, создаваемого зарядом, который мог как-то произвольно двигаться. Уравнение имело вид

см гл 28 вып 3 выражение 283 Если заряд движется произвольным - фото 343

[см. гл. 28 (вып. 3), выражение (28.3)].

Если заряд движется произвольным обра­зом, то электрическое поле, которое существует в некоторой точке, в настоящий момент за­висит только от положения и движения заряда в более ранний момент времени, отстающий на интервал, необходимый для того, чтобы свет, двигаясь со скоростью с, прошел расстояние r ' от заряда до точки поля. Иными словами, если вам нужно знать электрическое поле в точке (1) в момент t , вы должны подсчитать положение (2') заряда и его движение в момент ( t - r '1с} [где r ' — расстояние до точки (1)] из положения заряда (2') в момент ( t r / с).

Фиг 211 Поля в точке 1 в момент t зависят от того положения 2 которое - фото 344

Фиг. 21.1. Поля в точке (1) в момент t зависят от того положения (2'), которое заряд q занимал в момент ( t r ' / с).

Штрихи здесь напоминают вам, что r ' — это так называемое «запаздывающее расстояние» от точки (2') к точке (1), а вовсе не теперешнее расстояние между точкой (2) — положением за­ряда в момент t и точкой поля (1) (фиг. 21.1). Заметьте, что сейчас по-иному определяется направление единичного век­тора е r . В гл. 28 и 34 (вып. 3) мы уславливались, что r (и, стало быть, е r) будет показывать на источник. Теперь же мы следуем определению, используемому в формулировке закона Кулона, по которому r направлено от заряда [в точке (2)] к точке (1) поля. Единственное отличие в том, что новое r (и е r) противо­положно старому.

Мы видели также что если скорость заряда v всегда много меньше с и если - фото 345

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x