Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Feynmann 6 - изображение 262

тоже равен нулю. Остающееся объемное интегрирование нужно проделывать только в промежутках между провод­никами.

Feynmann 6 - изображение 263

И мы, конечно, снова получаем уравнение Пуассона

Feynmann 6 - изображение 264

Мы стало быть показали что наш первоначальный интеграл U достигает - фото 265

Мы, стало быть, показали, что наш первоначальный интеграл U * достигает минимума и тогда, когда он вычисляется в про­странстве между проводниками, каждый из которых находится при фиксированном потенциале [это значит, что каждая проб­ная функция j (х, у, z ) должна равняться заданному потенциалу проводника, когда (х, у, z ) точки поверхности проводника]. Существует интересный частный случай, когда заряды рас­положены только на проводниках. Тогда

и наш принцип минимума говорит нам, что в случае, когда у каждого проводника есть свой заранее заданный потенциал, потенциалы в промежутках между ними пригоняются так, что интеграл U * оказывается как можно меньше. А что это за интеграл? Член Сj — это электрическое поле. Значит, интеграл — это электростатическая энергия. Правильное поле и есть то единственное, которое из всех полей, получаемых как градиент потенциала, отличается наименьшей полной энер­гией.

Я хотел бы воспользоваться этим результатом, чтобы решить какую-нибудь частную задачу и показать вам, что все эти вещи имеют реальное практическое зна­чение. Предположим, что я взял два проводника в форме цилин­дрического конденсатора.

У внутреннего проводника потенциал равен скажем V а у внешнего нулю - фото 266

У внутреннего проводника потен­циал равен, скажем, V , а у внеш­него— нулю. Пусть радиус внут­реннего проводника будет равен а, а внешнего — b . Теперь мы можем предположить, что распределение потенциалов между ними — любое.

Но если мы возьмем правильное значение j и вычислим

то должна получиться энергия системы 1 2CV 2 Так что с помощью нашего - фото 267

, то должна получиться энергия системы 1/ 2CV 2.

Так что с помощью нашего принципа можно подсчитать и емкость С. Если же мы возьмем неправильное распределение потенциала и попытаемся этим методом прикинуть емкость конденсатора, то придем к чересчур большому значению емкости при фикси­рованном V . Любой предполагаемый потенциал j, не точно совпадающий с истинным его значением, приведет и к невер­ной величине С, большей, чем нужно. Но если неверно выбран­ный потенциал j является еще грубым приближением, то ем­кость С получится уже с хорошей точностью, потому что по­грешность в С — величина второго порядка по сравнению с погрешностью в j.

Предположим что мне неизвестна емкость цилиндрического конденсатора Тогда - фото 268

Предположим, что мне неизвестна емкость цилиндрического конденсатора. Тогда, чтобы узнать ее, я могу воспользоваться этим принципом. Я просто буду испытывать в качестве потен­циала разные функции j до тех пор, пока не добьюсь наиниз­шего значения С. Допустим, к примеру, что я выбрал потен­циал, отвечающий постоянному полю. (Вы, конечно, знаете, что на самом деле поле здесь не постоянно; оно меняется как 1/r.) Если поле постоянно, то это означает, что потенциал ли­нейно зависит от расстояния. Чтобы напряжение на провод­никах было каким нужно, функция j должна иметь вид

Эта функция равна V при r а нулю при rb а между ними имеется постоянный - фото 269

Эта функция равна V при r =а, нулю при r=b, а между ними имеется постоянный наклон, равный — V /( b - а). Значит, чтобы определить интеграл U*, надо только помножить квадрат этого градиента на e 0/2 и проинтегрировать по всему объему. Проведем этот расчет для цилиндра единичной длины. Элемент объема при радиусе r равен 2 p rdr . Проводя интегрирование, я нахожу, что моя первая проба дает такую емкость:

Интеграл здесь просто равен

Feynmann 6 - изображение 270

Так я получаю формулу для емкости которая хотя и неправильна но является - фото 271

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x