Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь, если весь интеграл от t 1до t 2достиг минимума, необ­ходимо, чтобы интеграл вдоль маленького участочка от а до b тоже был минимальным. Не может быть, чтобы часть от а до b хоть чуточку превосходила минимум. Иначе вы могли бы по­двигать туда-сюда кривую на этом участочке и снизить немного значение всего интеграла.

Значит, любая часть пути тоже должна давать минимум. И это справедливо для каких угодно маленьких долек пути. Поэтому тот принцип, что весь путь должен давать минимум, можно сформулировать, сказав, что бесконечно малая долька пути — это тоже такая кривая, на которой действие минималь­но. И если мы возьмем достаточно короткий отрезок пути — между очень близкими друг к другу точками а и b,— то уже неважно, как меняется потенциал от точки к точке вдали от этого места, потому что, проходя весь ваш коротенький отрезочек, вы почти не сходите с места. Единственное, что вам нужно учитывать,— это изменение первого порядка малости в потенциале. Ответ может зависеть только от производной по­тенциала, а не от потенциала в других местах. Так, утвержде­ние о свойстве всего пути в целом становится утверждением о том, что происходит на коротком участке пути, т. е. диф­ференциальным утверждением. И эта дифференциальная формулировка включает производные от потенциала, т. е. силу в данной точке. Таково качественное объяснение связи между законом в целом и дифференциальным законом.

Когда мы говорили о свете, то обсуждали также вопрос: как все-таки частица находит правильный путь? С дифферен­циальной точки зрения это понять легко. В каждый момент частица испытывает ускорение и знает только то, что ей поло­жено делать в это мгновение. Но все ваши инстинкты причин и следствий встают на дыбы, когда вы слышите, что частица «решает», какой ей выбрать путь, стремясь к минимуму дей­ствия. Уж не «обнюхивает» ли она соседние пути, прикидывая, к чему они приведут — к большему или к меньшему действию? Когда мы на пути света ставили экран так, чтобы фотоны не могли перепробовать все пути, мы выяснили, что они не могут решить, каким путем идти, и получили явление дифракции.

Но верно ли это и для механики? Правда ли, что частица не просто «идет верным путем», а пересматривает все другие мыслимые траектории? И что если, ставя преграды на ее пути, мы не дадим ей заглядывать вперед, то мы получим некий ана­лог явления дифракции? Самое чудесное во всем этом — то, что все действительно обстоит так. Именно это утверждают законы квантовой механики. Так что наш принцип наименьшего действия сформулирован не полностью. Он состоит не в том, что частица избирает путь наименьшего действия, а в том, что она «чует» все соседние пути и выбирает тот, вдоль которого действие минимально, и способ этого выбора сходен с тем, ка­ким свет отбирает кратчайшее время. Вы помните, что способ, каким свет отбирает кратчайшее время, таков: если свет пойдет по пути, требующему другого времени, то придет он с другой фазой. А полная амплитуда в некоторой точке есть сумма вкладов амплитуд для всех путей, по которым свет может ее достичь. Все те пути, у которых фазы резко различаются, ничего после сложения не дают. Но если вам удалось найти всю последовательность путей, фазы которых почти одинаковы, то мелкие вклады сложатся, и в точке прибытия полная ампли­туда получит заметное значение. Важнейшим путем становится тот, возле которого имеется множество близких путей, дающих ту же фазу.

В точности то же происходит и в квантовой механике. За­конченная квантовая механика (нерелятивистская и пренебре­гающая спином электрона) работает так: вероятность того, что частица, выйдя из точки 1 в момент t 1 , достигнет точки 2 в момент t 2 , равна квадрату амплитуды вероятности. Полная амплитуда может быть записана в виде суммы амплитуд для всех возможных путей — для любого пути прибытия. Для лю­бого x ( t ), которое могло бы возникнуть для любой мыслимой воображаемой траектории, нужно подсчитать амплитуду. Затем их все нужно сложить. Что же мы примем за амплитуду ве­роятности некоторого пути? Наш интеграл действия говорит нам, какой обязана быть амплитуда отдельного пути. Ампли­туда пропорциональна e iS / h , где S действие на этом пути. Это значит, что если мы представим фазу амплитуды в виде комплексного числа, то фазовый угол будет равен S / h ,. Действие S имеет размерность энергии на время, и у постоянной Планка размерность такая же. Это постоянная, которая определяет, когда нужна квантовая механика.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x