Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наконец, я приведу рассуждение Эйнштейна, которое еще раз продемонстрирует то же самое утверждение. Предположим, у нас есть вагон с какой-то большой массой М, который может без трения катиться по рельсам. В одном его конце расположено устройство, способное «выстреливать» какие-то частицы или световой импульс (совершенно безразлично, чем оно стреляет), которые ударяются о противоположный конец вагона. Следо­вательно, некоторое количество энергии, скажем U , находив­шееся первоначально на одном конце (фиг. 27.7,а), перелетает на противоположный конец (фиг. 27.7,в). Таким образом, энергия U перемещается на расстояние, равное длине вагона L . Этой энергии U соответствует масса U/с 2, так что если вагон вначале стоял, то его центр масс должен передвинуться. Эйнштейну не понравилось заключение о том, что центр масс предмета можно переместить какими-то манипуляциями внутри него. Он считал, что никакие внутренние действия не могут изменить центр масс. Но если это так, то при перемещении энергии U с одного конца на другой сам вагон должен откатиться на расстояние х

(фиг. 27.7, в). В самом деле, нетрудно убедиться, что полная масса вагона, умноженная на х, должна быть равна произведе­нию перемещенной энергии U / c 2 на длину L (при условии, что U / C 2 много меньше М), т. е.

Feynmann 6a - изображение 373

(27.22)

Теперь рассмотрим конкретный случай, когда энергия пере­носится вспышкой света. (Все рассуждения можно повторить и для частиц, но мы будем следовать за Эйнштейном, который интересовался проблемами света.) Что заставляет вагон дви­гаться? Эйнштейн рассуждал так: при испускании света должна быть отдача, какая-то неизвестная отдача с импульсом р. Именно она заставляет вагон откатиться назад. Скорость ва­гона v при такой отдаче должна быть равна импульсу отдачи, поделенному на массу М:

Feynmann 6a - изображение 374

Вагон движется с этой скоростью до тех пор пока свет не достигнет - фото 375

Вагон движется с этой скоростью до тех пор, пока свет не достигнет противоположного конца. Ударяясь, свет отдает импульс вагону и останавливает его. Если х мало, то время, в течение которого вагон движется, равно l/c, так что мы

Подставляя х в (27.22), находим

Feynmann 6a - изображение 376

Снова получилось соотношение между энергией и импульсом света. Деля это на с, находим плотность импульса g = p / c , и опять

Feynmann 6a - изображение 377

(27.23)

Вас может удивить так ли уж важна теорема о центре масс Может быть она - фото 378

Вас может удивить, так ли уж важна теорема о центре масс. Может быть, она нарушается? Возможно, но тогда вы теряете и закон сохранения момента количества движения. Предполо­жим, что наш вагончик движется по рельсам с некоторой ско­ростью и, и мы «выстреливаем» какое-то количество световой энергии от потолка к полу, например из точки А в точку В (фиг. 27.8). Посмотрим теперь на момент количества движения относительно точки Р. До того как порция энергии U покинула точку А, у нее была масса m = U 2 / c и скорость v , так что ее мо­мент количества движения был равен mvr a . Когда же она приле­тела в точку В, масса ее остается прежней, и если импульс всего вагона не изменился, то она по-прежнему должна иметь скорость v .

Фиг. 27 .8. Для сохранения мо­мента количества движения отно­сительно точки Р порция энергии U должна нести импульс U / c .

Однако момент количества движения относительно точки Р будет уже mvr B . Таким образом, если вагону при излу­чении света не передается никакого импульса, т. е. если свет не переносит импульса U / c , то момент количества движения должен измениться. Оказывается, что в теории относительности сохранение момента количества движения и теорема о центре масс тесно связаны между собой. И если неверна теорема, то нарушается и закон сохранения момента количества движения. Во всяком случае, общий закон должен быть справедлив и для электродинамики, так что им можно воспользоваться для полу­чения импульса поля.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x