Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Feynmann 6a - изображение 339

Но если мы имеем выражение D f fg , то оно означает

Feynmann 6a - изображение 340

Заметим теперь что согласно нашему новому правилу fD f g означает то же - фото 341

Заметим теперь, что, согласно нашему новому правилу, fD f g означает то же самое. Одно и то же выражение можно записать любым из следующих способов:

Вы видите, что D f может стоять даже после всего. (Странно, почему такому удобному обозначению обычно не учат в книгах по математике и физике.)

Вы, пожалуй, удивитесь: а что, если я хочу написать произ­водную от fg ? Если мне нужна производная от обоих членов? Это очень легко: вы пишете D f ( fg ) + D g ( fg ), т.e. g ( df / dx ) + f ( dg / dx ), что в старых обозначениях как раз равно d ( fg )/ dx .

Вы сейчас увидите, как просто теперь получить новое выра­жение для С·(ВXЕ). Начнем с перехода к новому обозначению и напишем

2710 Как только мы сделали это уже нет больше нужды придерживаться - фото 342

(27.10)

Как только мы сделали это, уже нет больше нужды придержи­ваться строгого порядка. Мы всегда знаем, что С Eдействует только на Е, a С Bдействует только на В. При этих обстоятель­ствах оператором С можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различ­ные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(С BXВ). [Надеюсь, вы помните, что a·(bXc) = b·(cXa).] А последний — как В·(EXС E). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вер­нуться к старым обозначениям, то должны будем расположить операторы С так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у С. Второй же требует некоторой реорганизации, чтобы оператор С поставить перед Е. Этого можно

добиться переставляя сомножители в векторном произведении и меняя знак - фото 343

добиться, переставляя сомножители в векторном произ­ведении и меняя знак:

Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:

В этом специальном случае быстрее было бы использовать компоненты но право - фото 344

(В этом специальном случае быстрее было бы использовать ком­поненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)

Вернемся теперь к нашему закону сохранения энергии причем для преобразования - фото 345

Вернемся теперь к нашему закону сохранения энергии, при­чем для преобразования СXB в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:

Теперь вы видите, что мы почти у цели. Одно из наших сла­гаемых — настоящая производная no t , ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, ко­торое не является ни дивергенцией, ни производной по t . Так что пока еще не все закончено. После некоторых размышле­ний мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (СXE) равно — dB / dt .

Это позволяет превратить дополнительный член в чистую производную чегото по - фото 346

Это позволяет превратить дополнительный член в чистую производную чего-то по времени:

Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде

Feynmann 6a - изображение 347

А это, если мы определим u и S как

Feynmann 6a - изображение 348

(27.14)

Feynmann 6a - изображение 349

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x