(22.11)
Предполагается далее, что у идеального генератора магнитный поток через катушку определяется внешними условиями (такими, как угловая скорость вращающегося магнитного поля) и что на него никак не влияют токи, текущие через генератор. Таким образом, генератор (по крайней мере рассматриваемый нами идеальный) — это не импеданс. Разность потенциалов на его зажимах определяется произвольно задаваемой э.д.с. e ( t ). Такой идеальный генератор представляют символом, показанным на фиг. 22.6. Маленькая стрелка дает направление положительной э.д.с. Положительная э.д.с. в генераторе, изображенном на фиг. 22.6, создает напряжение V = e с более высоким потенциалом на зажиме а.
Можно сделать генератор и по-другому. Внутри он будет устроен совершенно иначе, но снаружи, на зажимах, он ничем не будет отличаться от только что описанного. Представим катушку, которая вращается в неподвижном магнитном поле (фиг.22.7).
Мы изобразили магнитную палочку, чтобы показать наличие магнитного поля, но его можно, конечно, заменить любым другим источником постоянного магнитного поля, скажем добавочной катушкой, по которой течет постоянный ток. Как показано на рисунке, вращающаяся катушка связана с внешним миром скользящими контактами, или «кольцами». Нас опять интересует разность потенциалов, которая появляется между клеммами а и b , т. е. интеграл от электрического поля между а и b по пути снаружи генератора.
Теперь в этой системе уже нет изменяющихся магнитных полей и на первый взгляд кажется удивительным, откуда на зажимах генератора берется напряжение. Действительно, ведь нигде же внутри генератора нет никаких электрических полей. Мы, как обычно, предполагаем для наших идеальных элементов, что внутри них провода сделаны из идеально проводящего материала; а, как уже неоднократно повторялось, электрическое поле внутри идеального проводника равно нулю. Но это не всегда верно. Это неверно тогда, когда проводник движется в магнитном поле. Правильное утверждение таково: общая сила, действующая на произвольный заряд внутри идеального проводника, должна быть равна нулю. Иначе в нем возник бы бесконечный ток свободных зарядов. Так что надо брать сумму электрического поля Е и векторного произведения скорости проводника v на магнитное поле В; это есть полная сила, действующая на единичный заряд, и вот она-то всегда равна нулю:
F=E+vXB=0 (в идеальном проводнике). (22.12)
А наше прежнее утверждение о том, что внутри идеальных проводников электрических полей не бывает, верно лишь тогда, когда скорость проводника v равна нулю; в противном случае справедливо выражение (22.12).
Вернемся к нашему генератору, показанному на фиг. 22.7. Теперь мы видим, что контурный интеграл от электрического поля Е между зажимами а и b по проводящим путям генератора должен быть равен контурному интегралу от vXB по тому же пути;


Фиг. 22.7. Генератор, состоящий из катушки, вращающейся в неподвижном магнитном поле.
Однако по-прежнему остается верным, что контурный интеграл от Е по замкнутой петле, включая возвращение от зажима b к а вне генератора, должен быть равен нулю, потому что меняющиеся магнитные поля отсутствуют. Так что первый интеграл в (22.13) по-прежнему равен V — напряжению на зажимах. Оказывается, что интеграл в правой части (22.13) просто равен быстроте изменения потока через катушку, а значит, по правилу потока, равен э.д.с. катушки. И опять получается, что разность потенциалов между зажимами равна э.д.с. цепи в согласии с уравнением (22.11). Так что все равно, какой у нас генератор: меняется ли в нем магнитное поле возле закрепленной катушки, вертится ли в закрепленном магнитном поле катушка,— внешние свойства генераторов одни и те же. На клеммах всегда существует напряжение V, которое не зависит от тока в цепи, а определяется только условиями внутри генератора, формируемыми по нашему произволу.
Поскольку мы пытаемся понять работу генератора, основываясь на уравнениях Максвелла, может возникнуть вопрос об обычном химическом элементе, о батарейке для карманного фонарика. Это тоже генератор, т. е. источник напряжения, хотя и применяется он только в цепях постоянного тока. Проще всего разобраться в элементе, изображенном на фиг. 22.8. Представьте две металлические пластинки, погруженные в какой-то химический раствор. Пусть раствор содержит в себе положительные и отрицательные ионы. Мы предположим еще, что ионы одного сорта, скажем отрицательные, много массивнее ионов, имеющих противоположную полярность, так что их движение в растворе (диффузия) происходит намного медленнее.
Читать дальше